Astrophysics and Space Science

, 364:193 | Cite as

An investigation on time dependency of K index-based geomagnetic storm conditions observed over different locations of North America

  • Swati ChoudhuryEmail author
Original Article


Today, the scientists and researchers from almost every corner of the world are well aware of the adverse effects of geomagnetic storms on our highly expensive electrical and electromagnetic systems such as power grid transmission, satellite communication, RF communication systems, etc. The severe damaging effects of these storms on human health and on other inhabitants of the biosphere are also not unknown. A survey of literature on space science reveals that location or space dependency of these geomagnetic storms has already been established. Now the question may arise—Are geomagnetic storms time-dependent? To answer this question, a laborious exercise has been performed. K-index data obtained from the US Department of Commerce, NOAA, Space Weather Prediction Center, for the year, started from 1994 to 2014 (21 years) over three different locations namely Fredericksburg, College, and Estimated Planetary, are analyzed statistically for the eight different time periods namely 00:00–03:00, 03:00–06:00, 06:00–09:00, 09:00–12:00, 12:00–15:00, 15:00–18:00, 18:00–21:00, 21:00–24:00 hours respectively. Results thus obtained have concluded that apart from space or location dependency the geomagnetic storms are time-dependent also.


Geomagnetic storm Inactive Very Quiet Quiet Unsettled Active Minor Storm Major Storm Severe Storm Very Severe Storm Percentage occurrence K-index 



I acknowledge the US Department of Commerce, NOAA, Space Weather Prediction Centre for providing the data on their website. The purpose of this work is purely academic and without this data, it was not at all possible for me to represent this useful research work.


  1. Baker, D.N., et al.: Severe Space Weather Events-Understanding Societal and Economic Impacts. A Workshop Report—Extended Summary. The National Academy Press, Washington, DC (2009). 32 pp.,
  2. Bartels, J., Heck, N.H., Johnston, H.F.: The three-hour range index measuring geomagnetic activity. Geophys. Res. 44, 411–454 (1939) ADSCrossRefGoogle Scholar
  3. Carrasco, V.M.S., Aragonès, E., Ordaz, J., Vaquero, J.M.: The Great Aurora of January 1770 observed in Spain. Hist. Geo- Space Sci. 9, 133–139 (2018). ADSCrossRefGoogle Scholar
  4. Choudhury, S.: Analytical studies to visualize the geomagnetic storm conditions over different locations in the USA: Part 1. Int. J. Space Sci. Eng. 3(3), 279–294 (2015a) CrossRefGoogle Scholar
  5. Choudhury, S.: Analytical studies to visualize the geomagnetic storm conditions over different locations in the USA: Part 2. Int. J. Space Sci. Eng. 3(4), 360–387 (2015b) CrossRefGoogle Scholar
  6. Cid, C., Palacios, J., Saiz, E., Guerrero, A., Cerrato, Y.: On extreme geomagnetic storms. J. Space Weather Space Clim. 4, A28 (2014). ADSCrossRefGoogle Scholar
  7. Cliver, E.W., Dietrich, W.F.: The 1859 space weather event revisited: limits of extreme activity. J. Space Weather Space Clim. 3, A31 (2013). ADSCrossRefGoogle Scholar
  8. Daglis, I.A.: Space storms and space weather hazards. In: Proceedings of the NATO Advanced Study Institute on Space Storm and Space Weather Hazards, Hersonissos, Crete, Greece. Springer, Berlin (2000), 482 pp. Google Scholar
  9. Dyer, C., Hands, A., Ryden, K., Lei, F.: Extreme atmospheric radiation environments & single event effects. IEEE Trans. Nucl. Sci. 65(1), 432–438 (2018). ADSCrossRefGoogle Scholar
  10. Goon, A.M., Gupta, M.K., Dasgupta, B.: Fundamentals of Statistics, vol. 1, 3rd edn. The World Press, Calcutta (1968), 497 pp. Google Scholar
  11. Green, J.L., Boardsen, S.: Duration and extent of the great auroral storm of 1859. Adv. Space Res. 38(2), 130–135 (2006) ADSCrossRefGoogle Scholar
  12. Hapgood, M.A.: Towards a scientific understanding of the risk from extreme space weather. Adv. Space Res. 47(12), 2059–2072 (2011) ADSCrossRefGoogle Scholar
  13. Hapgood, M.: Prepare for the coming space weather storm. Nature 484, 311–313 (2012) ADSCrossRefGoogle Scholar
  14. Hattori, K., Hayakawa, H., Ebihara, Y.: Occurrence of great magnetic storms on 6–8 March 1582. Mon. Not. R. Astron. Soc. (2019). CrossRefGoogle Scholar
  15. Hayakawa, H.: East Asian observations of low-latitude aurora during the Carrington magnetic storm. Publ. Astron. Soc. Jpn. 68(6), 1–13 (2016) CrossRefGoogle Scholar
  16. Hayakawa, H., Tamazawa, H., Uchuyama, Y.: Historical aurora evidences for great magnetic storms in 990s. Sol. Phys. 292, 1–14 (2017a) CrossRefGoogle Scholar
  17. Hayakawa, H., Mitsuma, Y., Fujiwara, Y., et al.: The earliest drawings of datable auroras and a two-tail comet from the Syriac Chronicle of Zūqnīn. Publ. Astron. Soc. Jpn. 69, 17 (2017b). ADSCrossRefGoogle Scholar
  18. Hayakawa, H., Iwahashi, K., Ebihara, Y., et al.: Long-lasting extreme magnetic storm activities in 1770 found in historical documents. Astrophys. J. Lett. 850, L31 (2017c) ADSCrossRefGoogle Scholar
  19. Hayakawa, H., Tamazawa, H., Uchiyama, Y., Ebihara, Y., Miyahara, H., Kosaka, S., Iwahashi, K., Isobe, H.: Historical auroras in the 990s: evidence of great magnetic storms. Sol. Phys. 292, 12 (2017d). ADSCrossRefGoogle Scholar
  20. Hayakawa, H., Ebihara, Y., Willis, D.M., Hattori, K., Giunta, A.S., Wild, M.N., Hayakawa, S., Toriumi, S., Mitsuma, Y., Macdonald, L.T., Shibata, K., Silverman, S.M.: The great space weather event during 1872 February recorded in East Asia. Astrophys. J. 862, 15 (2018a) ADSCrossRefGoogle Scholar
  21. Hayakawa, H., Ebihara, Y., Hand, D.P., Hayakawa, S., Sandeep, K., Mukherjee, S., Veenadhari, S.: Low-latitude aurorae during the extreme space weather events in 1859. Astrophys. J. 869, 57 (2018b) ADSCrossRefGoogle Scholar
  22. Hayakawa, H., Ebihara, Y., Vaquero, J.M., et al.: A great space weather event in February 1730. Astron. Astrophys. 616, A177 (2018c). CrossRefGoogle Scholar
  23. Hayakawa, H., Ebihara, Y., Cliver, E.W., et al.: The extreme space weather event in September 1909. Mon. Not. R. Astron. Soc. 484, 4083–4099 (2019). ADSCrossRefGoogle Scholar
  24. Iyemori, T., Takeda, M., Nose, M., Odagi, Y., Toh, H.: Mid-latitude Geomagnetic Indices “ASY” and” SYM” for 2009 (Provisional). Data Analysis Center for Geomagnetism and Space Magnetism, Graduate School of Science, Kyoto University, Japan (2010), 10 pp. Google Scholar
  25. Knipp, D.J., Fraser, B.J., Shea, M.A., Smart, D.F.: On the little known consequences of the 4 August 1972 ultra fast coronal mass ejecta: facts, commentary, and call to action. Space Weather 16, 1635–1643 (2018). ADSCrossRefGoogle Scholar
  26. Lakhina, G.S., Tsurutani, B.T.: Geomagnetic storms: historical perspective to modern view. Geosci. Lett. 20163, 5 (2016). ADSCrossRefGoogle Scholar
  27. Love, J.J., Lucas, G.M., Bedrosian, P.A., Kelbert, A.: Extreme-value geoelectric amplitude and polarization across the Northeast United States. Space Weather 17(3), 379–395 (2019a). ADSCrossRefGoogle Scholar
  28. Love, J.J., Hayakawa, H., Cliver, E.W.: On the intensity of the magnetic superstorm of September 1909. Space Weather 17, 37–45 (2019b). ADSCrossRefGoogle Scholar
  29. Pulkkinen, A., Thomson, A., Clarke, E., McKay, A.: April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents. Ann. Geophys. 21, 709–717 (2003). ADSCrossRefGoogle Scholar
  30. Riley, P.: On the probability of occurrence of extreme space weather events. Space Weather 10(2), 1–12 (2012). CrossRefGoogle Scholar
  31. Riley, P., Baker, D., Liu, Y.D., Verronen, P., Singer, H., Gudel, M.: Extreme space weather events: from cradle to grave. Space Sci. Rev. 214, 1 (2018). ADSCrossRefGoogle Scholar
  32. Saiz, E., Guerrero, A., Cid, C., Palacios, J., Cerrato, Y.: Searching for Carrington-like events and their signatures and triggers. J. Space Weather Space Clim. 6, A6 (2016) ADSCrossRefGoogle Scholar
  33. Siscoe, G., Crooker, N.E., Clauer, C.R.: Dst of the Carrington storm of 1859. Adv. Space Res. 38(12), 173–179 (2006) ADSCrossRefGoogle Scholar
  34. Stephenson, F.R., Willis, D.M., Hayakawa, H., et al.: Do the Chinese astronomical records dated AD 776 January 12/13 describe an auroral display or a lunar halo? A critical re-examination. Sol. Phys. 294, 36 (2019). ADSCrossRefGoogle Scholar
  35. Sugiura, M., Kamei, T.: Equatorial Dst Index 1957–86 (edited by Annick Bethelier and Michel Menvielle). ISGI Publication Office, 4 Avenue De Neptune, F-94100, Saint-Maur-Des-Fosses, France (1999) Google Scholar
  36. Tsurutani, B.T., Gonzalez, W.D., Lakhina, G.S., Alex, S.: The extreme magnetic storm of 1–2 September 1859. J. Geophys. Res. Space Phys. 108, A47 (2003) CrossRefGoogle Scholar
  37. Viljanen, A., Pirjola, R., Pracser, E., Katkalov, J., Wik, M., et al.: Geomagnetically induced currents in Europe. J. Space Weather Space Clim. 4, A09 (2014) CrossRefGoogle Scholar
  38. Willis, D.M., Stephenson, F.R.: Simultaneous auroral observations described in the historical records of China, Japan and, Korea from ancient times to AD 1700. Ann. Geophys. 18, 1–10 (2000) ADSCrossRefGoogle Scholar
  39. Willis, D.M., Stephenson, F.R.: Solar and auroral evidence for an intense recurrent geomagnetic storm during December in AD 1128. Ann. Geophys. 19, 3 (2001). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations