Advertisement

Existence and stability of equilibrium points in the photogravitational restricted four-body problem with Stokes drag effect

  • Aguda Ekele Vincent
  • Joel John TauraEmail author
  • Solomon Okpanachi Omale
Original Article

Abstract

The restricted four-body problem consists of an infinitesimal particle which is moving under the Newtonian gravitational attraction of three finite bodies, \(m_{1}\), \(m_{2}\) and \(m_{3}\). The three bodies (called primaries) are moving in circular orbits around their common centre of mass fixed at the origin of the coordinate system. Moreover, according to the solution of Lagrange, these primaries are fixed at the vertices of an equilateral triangle. The fourth body does not affect the motion of the three bodies. In this paper, we deal with the photogravitational version of the problem with Stokes drag acting as a dissipative force. We consider the case where all the primaries are sources of radiation and that two of the bodies, \(m_{2}\) and \(m_{3}\), have equal masses (\(m _{2} = m_{3} = \mu \)) and equal radiation factors (\(q_{2} = q_{3} = q\)) while the dominant primary body \(m_{1}\) is of mass \(1 - 2\mu \). We investigate the dynamical behaviour of an infinitesimal mass in the gravitational field of radiating primaries coupled with the Stokes drag effect. It is found that under constant dissipative force, collinear equilibrium points do not exist (numerically and of course analytically) whereas the existence and positions of the non-collinear equilibrium points depend on the parameters values. The linear stability of the non-collinear equilibrium points (\(L_{i},i = 1,2, \ldots ,8\)) is also studied and it is found that they are all unstable except \(L_{1}\), \(L _{7}\) and \(L_{8}\) which may be stable for a range of values of \(\mu \) and various values of radiation factors. Finally, we justify the relevance of the model in astronomy by applying it to a stellar system (Ross 104-Ross775a-Ross775b), for which all the equilibrium points have been seen to be unstable.

Keywords

Restricted four body problem Radiation pressure Stokes drag Equilibria Stellar system Stability 

Notes

Acknowledgements

Authors are thankful to the two anonymous reviewers, whose comments and suggestions have been very useful in improving the manuscript.

Funding

The authors state that they have not received any research grants.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alvarez-Ramirez, M., Barrabes, E.: Transport orbits in an equilateral restricted four-body problem. Celest. Mech. Dyn. Astron. 121(2), 191–210 (2015) ADSMathSciNetCrossRefGoogle Scholar
  2. Arribas, M., Abad, A., Elipe, A., Palacios, M.: Equilibria of the symmetric collinear restricted four-body problem with radiation pressure. Astrophys. Space Sci. 361, 84 (2016a) ADSMathSciNetCrossRefGoogle Scholar
  3. Arribas, M., Abad, A., Elipe, A., Palacios, M.: Out-of-plane equilibria in the symmetric collinear restricted four-body problem with radiation pressure. Astrophys. Space Sci. 361, 210–280 (2016b).  https://doi.org/10.1007/s10509-016-2858-1 MathSciNetCrossRefGoogle Scholar
  4. Baguhl, M., Grün, E., Hamilton, D., Linkert, G., Riemanhh, R., Staubach, P.: The flux of interstellar dust observed by Ulysses and Galileo. Space Sci. Rev. 72, 471–476 (1995) ADSCrossRefGoogle Scholar
  5. Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurc. Chaos 21, 2179–2193 (2011) MathSciNetCrossRefGoogle Scholar
  6. Baltagiannis, A.N., Papadakis, K.E.: Periodic solutions in the Sun-Jupiter-Trojan Asteroid-Spacecraft system. Planet. Space Sci. 75, 148–157 (2013).  https://doi.org/10.1016/j.pss.2012.11.006 ADSCrossRefGoogle Scholar
  7. Barrabés, E., Cors, J.M., Vidal, C.: Spatial collinear restricted four-body problem with repulsive Manev potential. Celest. Mech. Dyn. Astron. (2017).  https://doi.org/10.1007/s10569-017-9771-y MathSciNetCrossRefzbMATHGoogle Scholar
  8. Beaugé, C., Ferraz-Mello, S.: Resonance trapping in the primordial solar nebula: the case of a Stokes drag dissipation. Icarus 103, 301–318 (1993) ADSCrossRefGoogle Scholar
  9. Bhatnagar, K.B., Chawla, J.M.: A study of the Lagrangian points in the photogravitational restricted three-body problem. Indian J. Pure Appl. Math. 10, 1443–1451 (1979) ADSGoogle Scholar
  10. Burns, J.A., Lamy, P.L., Soter, S.: Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979).  https://doi.org/10.1016/0019-1035(79)90050-2 ADSCrossRefGoogle Scholar
  11. Campo, P., Docobo, J.: Analytical study of a four-body configuration in exoplanet scenarios. Astron. Lett. 40, 737–748 (2014) ADSCrossRefGoogle Scholar
  12. Ceccaroni, M., Biggs, J.: Low-thrust propulsion in a coplanar circular restricted four body problem. Celest. Mech. Dyn. Astron. 112, 191–219 (2012) ADSMathSciNetCrossRefGoogle Scholar
  13. Celletti, A., Stefanelli, L., Lega, E., Froeschlé, C.: Some results on the global dynamics of the regularized restricted three-body problem with dissipation. Celest. Mech. Dyn. Astron. 109, 265–284 (2011).  https://doi.org/10.1007/s10569-010-9326-y ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. Gascheau, M.: Examen d’une classe d’equations differentielles et applicationa un cas particulier du probleme des trois corps. Compt. Rend. 16, 393–394 (1843) Google Scholar
  15. Ishwar, B., Elipe, A.: Secular solutions at triangular equilibrium point in the generalized photo-gravitational three body problem. Astrophys. Space Sci. 277, 437–446 (2001) ADSCrossRefGoogle Scholar
  16. Ishwar, B., Kushvah, B.S.: Linear stability of triangular equilibrium points in the generalized photogravitational restricted three body problem with Poynting–Robertson drag. J. Dyn. Syst. Geom. Theories 4, 79–86 (2006). arXiv:math/0602467 MathSciNetCrossRefGoogle Scholar
  17. Jackson, A.A.: The capture of interstellar dust: the pure Poynting–Robertson case. Planet. Space Sci. 49, 417–424 (2001) ADSCrossRefGoogle Scholar
  18. Jain, M., Aggarwal, R.: Restricted three-body problem with Stokes drag effect. Int. J. Astron. Astrophys. 5, 95–105 (2015a).  https://doi.org/10.4236/ijaa.2015.52013K CrossRefGoogle Scholar
  19. Jain, M., Aggarwal, R.: A study of non-collinear libration points in restricted three body problem with Stokes drag effect when smaller primary is an oblate spheroid. Astrophys. Space Sci. 358, 51 (2015b).  https://doi.org/10.1007/s10509-015-2457-6 ADSCrossRefGoogle Scholar
  20. Kalvouridis, T.J., Arribas, M., Elipe, A.: The photo-gravitational restricted four-body problem: an exploration of its dynamical properties. In: Solomos, N. (ed.) Recent Advances in Astronomy and Astrophysics. American Institute of Physics Conference Series, vol. 848, pp. 637–646. Am. Inst. of Phys, New York (2006).  https://doi.org/10.1063/1.2348041 CrossRefGoogle Scholar
  21. Kalvouridis, T.J., Arribas, M., Elipe, A.: Parametric evolution of periodic orbits in the restricted four-body problem with radiation pressure. Planet. Space Sci. 55, 475–493 (2007).  https://doi.org/10.1016/j.pss.2006.07.005 ADSCrossRefGoogle Scholar
  22. Kumari, R., Kushvah, B.S.: Equilibrium points and zero velocity surfaces in the restricted four-body problem with solar wind drag. Astrophys. Space Sci. 344, 347–359 (2013) ADSCrossRefGoogle Scholar
  23. Luk’yanov, L.G.: Stability of coplanar libration points in the restricted photo-gravitational three-body problem. Sov. Astron. 31(6), 677–681 (1987) ADSzbMATHGoogle Scholar
  24. Luk’yanov, L.G.: Zero-velocity surfaces in the restricted, photogravitational three-body problem. Sov. Astron. 32, 215–220 (1988) ADSGoogle Scholar
  25. Manju, K., Choudhry, R.K.: On the stability of triangular libration points taking into account the light pressure for the circular restricted problem of three bodies. Celest. Mech. Dyn. Astron. 36, 165–190 (1985) MathSciNetCrossRefGoogle Scholar
  26. Marchand, B.G., Howell, K.C., Wilson, R.S.: Improved corrections process for constrained trajectory design in the n-body problem. J. Spacecr. Rockets 44, 884–897 (2007) ADSCrossRefGoogle Scholar
  27. Meyer, K., Hall, G., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, vol. 90. Springer, Berlin (2008) zbMATHGoogle Scholar
  28. Murray, C.D.: Dynamical effects of drag in the circular restricted three-body problem. Icarus 122, 465–484 (1994) ADSCrossRefGoogle Scholar
  29. Murray, C., Dermott, S.: Solar System Dynamics. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  30. Papadakis, K.E.: Families of periodic orbits in the photogravitational three body problem. Astrophys. Space Sci. 245, 1–13 (1996) ADSCrossRefGoogle Scholar
  31. Papadouris, J.P., Papadakis, K.E.: Equilibrium points in the photogravitational restricted four-body problem. Astrophys. Space Sci. 344, 21–38 (2013) ADSCrossRefGoogle Scholar
  32. Papadouris, J.P., Papadakis, K.E.: Periodic solutions in the photogravitational restricted four body problem. Mon. Not. R. Astron. Soc. 442, 1628–1639 (2014) ADSCrossRefGoogle Scholar
  33. Radzievskii, V.V.: The photogravitational restricted problems of three-bodies. Astron. J. 27, 250–256 (1950). (USSR) Google Scholar
  34. Radzievskii, V.V.: The photogravitational restricted problems of three-bodies and coplanar solutions. Astron. J. 30, 265–269 (1953). (USSR) Google Scholar
  35. Ragos, O., Zafiropoulos, F.A.: A numerical study of the influence of the Poynting-Robertson effect on the equilibrium points of the photo-gravitational restricted three-body problem. Astron. Astrophys. 300, 568–578 (1995) ADSGoogle Scholar
  36. Ragos, O., Zagouras, C.: The zero velocity surfaces in the photogravitational restricted three-body problem. Earth Moon Planets 41, 257–278 (1988) ADSCrossRefGoogle Scholar
  37. Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids—I. Long-term stability and diffusion. Mon. Not. R. Astron. Soc. 372, 1463–1482 (2006) ADSCrossRefGoogle Scholar
  38. Schuerman, D.W.: The restricted three-body problem including radiation pressure. Astrophys. J. 238, 337–342 (1980) ADSMathSciNetCrossRefGoogle Scholar
  39. Schwarz, R., Süli, À., Dvorac, R., Pilat-Lohinger, E.: Stability of Trojan planets in multi-planetary systems. Celest. Mech. Dyn. Astron. 104, 69–84 (2009a) ADSCrossRefGoogle Scholar
  40. Schwarz, R., Süli, À., Dvorac, R.: Dynamics of possible Trojan planets in binary systems. Mon. Not. R. Astron. Soc. 398, 2085–2090 (2009b) ADSCrossRefGoogle Scholar
  41. Simmons, J.F.L., McDonald, A.J.C., Brown, J.C.: The restricted 3-body problem with radiation pressure. Celest. Mech. 35, 145–187 (1985) ADSMathSciNetCrossRefGoogle Scholar
  42. Singh, J., Omale, S.O.: Combined effect of Stokes drag, oblateness and radiation pressure on the existence and stability of equilibrium points in the restricted four-body problem. Astrophys. Space Sci. 364, 6 (2019).  https://doi.org/10.1007/s10509-019-3494-3 ADSMathSciNetCrossRefGoogle Scholar
  43. Singh, J., Vincent, A.E.: Out-of-plane equilibrium points in the photogravitational restricted four-body problem. Astrophys. Space Sci. 359, 38 (2015).  https://doi.org/10.1007/s10509-015-2487-015-0 ADSCrossRefGoogle Scholar
  44. Singh, J., Vincent, A.E.: Equilibrium points in the restricted four-body problem with radiation pressure. Few-Body Syst. 57, 83–91 (2016) ADSCrossRefGoogle Scholar
  45. Singh, J., Vincent, E.A.: Combined effects of radiation and oblateness on the existence and stability of equilibrium points in the perturbed restricted four-body problem. Int. J. Space Sci. Eng. 4, 174–205 (2017) ADSCrossRefGoogle Scholar
  46. Suraj, M.S., Hassan, M.R.: Sitnikov restricted four-body problem with radiation pressure. Astrophys. Space Sci. 349, 705–716 (2014) ADSCrossRefGoogle Scholar
  47. Xuetang, Z., Lizhong, Y.: Photogravitationally restricted three-body problem and coplanar libration point. Chin. Phys. Lett. 10(1), 61 (1993) MathSciNetCrossRefGoogle Scholar
  48. Yamada, K., Tsuchiya, T.: The linear stability of the post-Newtonian triangular equilibrium in the three-body problem. Celest. Mech. Dyn. Astron. 129, 487–507 (2017) ADSMathSciNetCrossRefGoogle Scholar
  49. Zotos, E.E.: Escape and collision dynamics in the planar equilateral restricted four-body problem. Int. J. Non-Linear Mech. 86, 66–82 (2016) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Aguda Ekele Vincent
    • 1
  • Joel John Taura
    • 2
    Email author
  • Solomon Okpanachi Omale
    • 3
  1. 1.Department of Mathematics, School of Basic SciencesNigeria Maritime UniversityOkerenkokoNigeria
  2. 2.Department of Mathematics and Computer ScienceFederal University of KashereGombeNigeria
  3. 3.Engineering and Space Systems Department, National Space Research and Development Agency (NASRDA)Obasanjo Space CentreAbujaNigeria

Personalised recommendations