Resonance line in rotating accretion disc

  • N. A. Silant’evEmail author
  • G. A. Alekseeva
  • Y. K. Ananjevskaja
  • V. V. Novikov
Original Article


We study the resonance line emission from the rotating plane optically thick accretion disc, consisting of free electrons and resonant atoms. We use the standard assumption that the source of continuum radiation is located near central plane of the accretion disc, where the temperature is the highest. This corresponds to the Milne problem consideration for continuum. We shortly discuss the impossibility of the Milne problem for the resonance radiation. We assume that the resonant atoms are located in a thin layer of an accretion disc near the surface. In this case the resonance line emission arises due to scattering of a continuum on the resonant atoms. In thin layer we can neglect the multiple scattering of the resonance radiation on the resonant atoms. We consider the axially symmetric problems, where the Stokes parameter \(U=0\).

We take into account the Doppler effect for the frequencies of the resonance line. The three types of the resonant atom sources are considered (see Figs. 13). The first source is the axially symmetric continuous distribution of the resonant atoms along the circular orbit. The second spot-like source rotates in the orbit. The third type presents two spot-like sources located in the orbit contrary one to another. In the first and third cases the shape of the emitting resonance line is symmetric, i.e. the right and left wings have the similar shapes. In the second case the resonance line has asymmetric shape. The shape of the emerging line depends significantly on the ratio of the rotation velocity value to the velocity, characterizing the Doppler width. It also depends on the ratio of the electron number density to the number density of resonant atoms. The results of the calculations characterize the different observational effects of H\(\alpha \) radiation in the accretion discs and can be used for estimations of the parameters mentioned above. They also can be used for estimation of the inclination angle of an accretion disc.


Radiative transfer Resonance line Polarization Scattering Accretion discs 



This research was supported by the Program of Presidium of Russian Academy of Sciences N 12. Authors are very grateful to referees for very useful remarks and advices.


  1. Antonucci, R.R.J.: Astron. Astrophys. Rev. 31, 499 (1984) Google Scholar
  2. Antonucci, R.R.J.: Astrophys. J. 278, 473 (1993) Google Scholar
  3. Antonucci, R.R.J., Miller, J.S.: Astrophys. J. 297, 621 (1985) ADSCrossRefGoogle Scholar
  4. Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960) zbMATHGoogle Scholar
  5. Corbet, E.A., et al.: Mon. Not. R. Astron. Soc. 296, 721 (1998) ADSCrossRefGoogle Scholar
  6. Dementyev, A.V.: Astron. Lett. 34, 574 (2008) ADSCrossRefGoogle Scholar
  7. Faurobert, M.: Astron. Astrophys. 194, 268 (1988) ADSGoogle Scholar
  8. Faurobert, M., Frish, H.: Astron. Astrophys. 219, 338 (1989) ADSGoogle Scholar
  9. Faurobert, M., Frish, H., Nagendra, K.N.: Astron. Astrophys. 322, 896 (1997) ADSGoogle Scholar
  10. Fluri, D.M.: Radiative Transfer with Polarized Scattering in the Magnetized Solar Atmosphere. Cuvillier Verlag, Gottingen (2003) Google Scholar
  11. Frisch, U., Frisch, H.: Mon. Not. R. Astron. Soc. 181, 273 (1977) ADSCrossRefGoogle Scholar
  12. Goodrich, R.W., Miller, J.S.: Astrophys. J. 434, 82 (1994) ADSCrossRefGoogle Scholar
  13. Ivanov, V.V.: Sov. Astron. 6, 793 (1963) ADSGoogle Scholar
  14. Ivanov, V.V.: Radiative Transfer in Spectral Lines. National Bureau of Standarts, Washington (1973) (translation from Russian edition 1969) Google Scholar
  15. Ivanov, V.V.: Astron. Astrophys. 303, 609 (1995) ADSGoogle Scholar
  16. Marin, F.: Mon. Not. R. Astron. Soc. 441, 551 (2014) ADSCrossRefGoogle Scholar
  17. Martel, H.: Publ. Astron. Soc. Pac. 108, 227 (1996) Google Scholar
  18. Nagirner, D.I.: Vestn. Leningr. Univ. 1, 142 (1964) Google Scholar
  19. Nagirner, D.I., Ivanov, V.V.: Astrophysics 2, 5 (1966) ADSCrossRefGoogle Scholar
  20. Shakura, N.I., Sunyaev, R.A.: Astron. Astrophys. 24, 337 (1973) ADSGoogle Scholar
  21. Silant’ev, N.A., Gnedin, Yu.N., Buliga, S.D., Piotrovich, M.Yu., Natsvlishvili, T.M.: Astrophys. Bull. 68, 14 (2013) ADSCrossRefGoogle Scholar
  22. Silant’ev, N.A., Alekseeva, G.A., Novikov, V.V.: Astrophys. Space Sci. 357, 53 (2015) ADSCrossRefGoogle Scholar
  23. Silant’ev, N.A., Alekseeva, G.A., Novikov, V.V.: Astrophys. Space Sci. 362, 117 (2017a) ADSCrossRefGoogle Scholar
  24. Silant’ev, N.A., Alekseeva, G.A., Novikov, V.V.: Astrophys. Space Sci. 362, 151 (2017b) ADSCrossRefGoogle Scholar
  25. Smirnov, V.I.: The Course of Higher Mathematics, Vol. 4. Integral Equations and Partial Differential Equations. Pergamon, New York (1964) Google Scholar
  26. Smith, J.E., Young, S., Robinson, A.: Mon. Not. R. Astron. Soc. 335, 773 (2002) ADSCrossRefGoogle Scholar
  27. Smith, J.E., Robinson, A., Alexander, D.M., et al.: Mon. Not. R. Astron. Soc. 350, 140 (2004) ADSCrossRefGoogle Scholar
  28. Smith, J.E., Robinson, A., Young, S., et al.: Mon. Not. R. Astron. Soc. 359, 846 (2005) ADSCrossRefGoogle Scholar
  29. Sobolev, V.V.: Course in Theoretical Astrophysics. NASA Technical Translation F-531, Washington (1969) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • N. A. Silant’ev
    • 1
    Email author
  • G. A. Alekseeva
    • 1
  • Y. K. Ananjevskaja
    • 1
  • V. V. Novikov
    • 1
  1. 1.Central Astronomical Observatory at Pulkovo of Russian Academy of SciencesSaint-PetersburgRussia

Personalised recommendations