Ionospheric VTEC variations over Pakistan in the descending phase of solar activity during 2016–17

  • M. Arslan TariqEmail author
  • Munawar Shah
  • M. Hernández-Pajares
  • Talat Iqbal
Original Article


This paper presents the variations of the ionospheric Vertical Total Electron Content (VTEC) observed over Pakistan at the verge of low- to mid-latitude regions during the years 2016–17 of the descending phase of the solar cycle. The study is conducted by considering the ionospheric measurements from dual frequency Global Navigation Satellite System (GNSS) receivers permanently installed at Islamabad (geomagnetic Lat. 25.44°N, Long. 148.83°E), Multan (geomagnetic Lat. 22.13°N, Long. 146.91°E) and Quetta (geomagnetic Lat. 22.50°N, Long. 142.73°E). The diurnal, seasonal and annual variations of VTEC over Pakistan are examined in the context of geomagnetic storm during 2016. This study shows high values during the March and September equinoctial months and lower values during the summer and winter solstices from VTEC estimations. Furthermore, higher, moderate and lower VTEC variations are recorded during the seasonal analysis in the equinoxes, summer solstice and winter solstice, respectively. The maximum seasonal VTEC values are observed during the post-sunrise hours between 11:00–17:00 LT and the minimum values are recorded during the post-midnight hours between 02:00–05:00 LT during each season at all the stations. Moreover, the effect of geomagnetic storm is detected in the ionospheric VTEC of the three different stations, which occurred on 13 October 2016. The initial phase of the storm caused no prominent effect on VTEC, while an enhancement in VTEC is registered in the main and recovery phases of the storm. The recorded VTEC from three different stations is correlated with the indices of the geomagnetic storm.


Comparison of GPS-TEC and UGcal Ionospheric variations Geomagnetic activity 



The authors are very grateful to the data centre of Kyoto University and OMNI web for providing the solar and geomagnetic storms indices as well as NASA OMNI web interface for solar wind parameters and IMF-Bz data. We also thank the reviewers for helpful comments and suggestions to improve the manuscript.


  1. Adewale, A., Oyeyemi, E., Cilliers, P., McKinnell, L., Adeloye, A.: Low solar activity variability and IRI 2007 predictability of equatorial Africa GPS TEC. Adv. Space Res. 49, 316–326 (2012). ADSCrossRefGoogle Scholar
  2. Bagiya, M.S., Joshi, H., Iyer, K., Aggarwal, M., Ravindran, S., Pathan, B.: TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Ann. Geophys. 27, 1047–1057 (2009). ADSCrossRefGoogle Scholar
  3. Balan, N., Bailey, G.: Equatorial plasma fountain and its effects: possibility of an additional layer. J. Geophys. Res. Space Phys. 100, 21421–21432 (1995). ADSCrossRefGoogle Scholar
  4. Balan, N., Otsuka, Y., Nishioka, M., Liu, J., Bailey, G.: Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res. Space Phys. 118, 2660–2669 (2013) ADSCrossRefGoogle Scholar
  5. Barkat, A., Ali, A., Rehman, K., Awais, M., Tariq, M.A., Ahmed, J., Amin, M.A., Iqbal, T.: Multi-precursory analysis of Phalla earthquake (July 2015; Mw 5.1) near Islamabad, Pakistan. Pure Appl. Geophys. 175, 4289–4304 (2018). 2015 ADSCrossRefGoogle Scholar
  6. Bhattacharya, S., Purohit, P., Gwal, A.: Ionospheric time delay variations in the equatorial anomaly region during low solar activity using GPS. Indian J. Radio Space Phys. 38, 266–274 (2009) Google Scholar
  7. Bhattarai, S., Lopez, R.: Reduction of viscous potential for northward interplanetary magnetic field as seen in the LFM simulation. J. Geophys. Res. Space Phys. 118, 3314–3322 (2013). ADSCrossRefGoogle Scholar
  8. Bolaji, O., Adeniyi, J., Radicella, S., Doherty, P.: Variability of total electron content over an equatorial West African station during low solar activity. Radio Sci. 47, RS1001 (2012). ADSCrossRefGoogle Scholar
  9. Cesaroni, C., Spogli, L., Alfonsi, L., De Franceschi, G., Ciraolo, L., Monico, J.F.G., Scotto, C., Romano, V., Aquino, M., Bougard, B.: L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. J. Space Weather Space Clim. 5, A36 (2015) CrossRefGoogle Scholar
  10. Chakraborty, S., Hajra, R.: Electrojet control of ambient ionization near the crest of the equatorial anomaly in the Indian zone. Ann. Geophys. 27, 93 (2009). ADSCrossRefGoogle Scholar
  11. Chapman, S.: The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc. Phys. Soc. 43, 26 (1931) ADSCrossRefGoogle Scholar
  12. Chen, Y., Ma, G., Huang, W., Shen, H., Li, J.: Night-time total electron content enhancements at equatorial anomaly region in China. Adv. Space Res. 41, 617–623 (2008). ADSCrossRefGoogle Scholar
  13. Chowdhary, V.R., Tripathi, N., Arunpold, S., Raju, D.K.: Variations of total electron content in the equatorial anomaly region in Thailand. Adv. Space Res. 55, 231–242 (2015). ADSCrossRefGoogle Scholar
  14. Davies, K.: Ionospheric Radio. Peter Peregrinus, London (1990). CrossRefGoogle Scholar
  15. De Abreu, A., Fagundes, P., Gende, M., Bolaji, O., De Jesus, R., Brunini, C.: Investigation of ionospheric response to two moderate geomagnetic storms using GPS–TEC measurements in the South American and African sectors during the ascending phase of solar cycle 24. Adv. Space Res. 53, 1313–1328 (2014). ADSCrossRefGoogle Scholar
  16. Duncan, R.: The equatorial F-region of the ionosphere. J. Atmos. Terr. Phys. 18, 89–100 (1960). ADSCrossRefGoogle Scholar
  17. Förster, M., Jakowski, N.: Geomagnetic storm effects on the topside ionosphere and plasmasphere: a compact tutorial and new results. Surv. Geophys. 21, 47–87 (2000). ADSCrossRefGoogle Scholar
  18. Gonzalez, W., Joselyn, J., Kamide, Y., Kroehl, H., Rostoker, G., Tsurutani, B., Vasyliunas, V.: What is a geomagnetic storm? J. Geophys. Res. Space Phys. 99, 5771–5792 (1994). ADSCrossRefGoogle Scholar
  19. Goodman, J.M.: Space Weather & Telecommunications. The International Series in Engineering and Computer Science, vol. 782. Springer, Berlin (2006). CrossRefGoogle Scholar
  20. Gurtner, W., Estey, L.: RINEX. The Receiver Independent Exchange Format. Version 3.00. Astronomical Institute, University of Bern and UNAVCO, Bolulder, Colorado (2007) Google Scholar
  21. Hernández-Pajares, M., Juan, J., Sanz, J., Orus, R., Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S., Krankowski, A.: The IGS VTEC maps: a reliable source of ionospheric information since 1998. J. Geod. 83, 263–275 (2009) ADSCrossRefGoogle Scholar
  22. Hernández-Pajares, M., Juan, J.M., Sanz, J., Aragón-Àngel, À., García-Rigo, A., Salazar, D., Escudero, M.: The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J. Geod. 85, 887–907 (2011) ADSCrossRefGoogle Scholar
  23. Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A., García-Rigo, A., Orús-Pérez, R.: Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J. Geod. 91, 1405–1414 (2017) ADSCrossRefGoogle Scholar
  24. Huang, C.S., Roddy, P.A.: Effects of solar and geomagnetic activities on the zonal drift of equatorial plasma bubbles. J. Geophys. Res. Space Phys. 121, 628–637 (2016). ADSCrossRefGoogle Scholar
  25. Jain, A., Tiwari, S., Jain, S., Gwal, A.: Nighttime enhancements in TEC near the crest of northern equatorial ionization anomaly during low solar activity period. Indian J. Phys. 85, 1367–1380 (2011). ADSCrossRefGoogle Scholar
  26. Kumar, S., Singh, A.: The effect of geomagnetic storm on GPS derived total electron content (TEC) at Varanasi, India. J. Phys. Conf. Ser. 208, 012062 (2010) CrossRefGoogle Scholar
  27. Li, G., Ning, B., Liu, L., Zhao, B., Yue, X., Su, S.Y., Venkatraman, S.: Correlative study of plasma bubbles, evening equatorial ionization anomaly, and equatorial prereversal \(\mathbf{E}\times \mathbf{B}\) drifts at solar maximum. Radio Sci. 43, RS4005 (2008). Google Scholar
  28. Liu, G., Huang, W., Gong, J., Shen, H.: Seasonal variability of GPS-VTEC and model during low solar activity period (2006–2007) near the equatorial ionization anomaly crest location in Chinese zone. Adv. Space Res. 51, 366–376 (2013). ADSCrossRefGoogle Scholar
  29. Martyn, D.: Atmospheric tides in the ionosphere—I. Solar tides in the F2 region. Proc. R. Soc. Lond. A 189, 241–260 (1947) ADSCrossRefGoogle Scholar
  30. Moldwin, M.: An Introduction to Space Weather. Cambridge University Press, Cambridge (2008). CrossRefGoogle Scholar
  31. Olawepo, A., Adeniyi, J., Oluwadare, E.: TEC variations and IRI-2012 performance at equatorial latitudes over Africa during low solar activity. Adv. Space Res. 59, 1800–1809 (2017). ADSCrossRefGoogle Scholar
  32. Oryema, B., Jurua, E., D’ujanga, F., Ssebiyonga, N.: Investigation of TEC variations over the magnetic equatorial and equatorial anomaly regions of the African sector. Adv. Space Res. 56, 1939–1950 (2015) ADSCrossRefGoogle Scholar
  33. Pham, K.H., Lopez, R.E., Bruntz, R.: The effect of a brief northward turning in IMF Bz on solar wind-magnetosphere coupling in a global MHD simulation. J. Geophys. Res. Space Phys. 121, 4291–4299 (2016). ADSCrossRefGoogle Scholar
  34. Rao, P.R., Krishna, S.G., Niranjan, K., Prasad, D.: Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005. Ann. Geophys. 24, 3279–3292 (2006). ADSCrossRefGoogle Scholar
  35. Roma-Dollase, D., Hernández-Pajares, M., Krankowski, A., Kotulak, K., Ghoddousi-Fard, R., Yuan, Y., Li, Z., Zhang, H., Shi, C., Wang, C.: Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J. Geod. 92, 691–706 (2018) ADSCrossRefGoogle Scholar
  36. Sardar, N., Singh, A.K., Nagar, A., Mishra, S., Vijay, S.: Study of latitudinal variation of ionospheric parameters—a detailed report. J. Indian Geophys. Union 16, 113–133 (2012) Google Scholar
  37. Schunk, R., Nagy, A.: Ionospheres. Cambridge University Press, Cambridge (2000) CrossRefGoogle Scholar
  38. Seemala, G.K.: GPS-TEC analysis application read me. Institute for Scientific Research, Boston College, USA (2011) Google Scholar
  39. Sharma, K., Dabas, R., Ravindran, S.: Study of total electron content variations over equatorial and low latitude ionosphere during extreme solar minimum. Astrophys. Space Sci. 341, 277–286 (2012). ADSCrossRefGoogle Scholar
  40. Stolle, C., Manoj, C., Lühr, H., Maus, S., Alken, P.: Estimating the daytime equatorial ionization anomaly strength from electric field proxies. J. Geophys. Res. Space Phys. 113, A09310 (2008). ADSCrossRefGoogle Scholar
  41. Su, Y., Bailey, G., Balan, N.: Night-time enhancements in TEC at equatorial anomaly latitudes. J. Atmos. Terr. Phys. 56, 1619–1628 (1994). ADSCrossRefGoogle Scholar
  42. Tariq, M.A., Shah, M., Hernández-Pajares, M., Iqbal, T.: Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Adv. Space Res. 63, 2088–2099 (2019a). ADSCrossRefGoogle Scholar
  43. Tariq, M.A., Shah, M., Ulukavak, M., Iqbal, T.: Comparison of TEC from GPS and IRI-2016 model over different regions of Pakistan during 2015–2017. Adv. Space Res. (2019b).
  44. Tsai, H.F., Liu, J.Y., Tsai, W.H., Liu, C.H., Tseng, C.L., Wu, C.C.: Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions. J. Geophys. Res. Space Phys. 106, 30363–30369 (2001). ADSCrossRefGoogle Scholar
  45. Uma, G., Brahmanandam, P., Kakinami, Y., Dmitriev, A., Devi, N.L., Kiran, K.U., Prasad, D., Rao, P.R., Niranjan, K., Babu, C.S.: Ionospheric responses to two large geomagnetic storms over Japanese and Indian longitude sectors. J. Atmos. Sol.-Terr. Phys. 74, 94–110 (2012). ADSCrossRefGoogle Scholar
  46. Unnikrishnan, K., Nair, R.B., Venugopal, C.: A comparative study of night-time enhancement of TEC at a low latitude station on storm and quiet nights including the local time, seasonal and solar activity dependence. Ann. Geophys. 20, 1843–1850 (2002) ADSCrossRefGoogle Scholar
  47. Venkatesh, K., Fagundes, P., Prasad, D., Denardini, C., Abreu, A., Jesus, R., Gende, M.: Day-to-day variability of equatorial electrojet and its role on the day-to-day characteristics of the equatorial ionization anomaly over the Indian and Brazilian sectors. J. Geophys. Res. Space Phys. 120, 9117–9131 (2015). ADSCrossRefGoogle Scholar
  48. Vijaya Lekshmi, D., Balan, N., Tulasi Ram, S., Liu, J.: Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles. J. Geophys. Res. Space Phys. 116, A11328 (2011). ADSCrossRefGoogle Scholar
  49. Warnant, R., Pottiaux, E.: The increase of the ionospheric activity as measured by GPS. Earth Planets Space 52, 1055–1060 (2000). ADSCrossRefGoogle Scholar
  50. Woodman, R.F., La Hoz, C.: Radar observations of F region equatorial irregularities. J. Geophys. Res. 81, 5447–5466 (1976). ADSCrossRefGoogle Scholar
  51. Wu, C.-C., Liou, K., Shan, S.-J., Tseng, C.-L.: Variation of ionospheric total electron content in Taiwan region of the equatorial anomaly from 1994 to 2003. Adv. Space Res. 41, 611–616 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centre for Earthquake StudiesNational Centre for PhysicsIslamabadPakistan
  2. 2.Institute of Space TechnologyIslamabadPakistan
  3. 3.IonSATUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations