Advertisement

Cosmological imprints of the stealth scalar field

  • Abigail Alvarez
  • Cuauhtemoc Campuzano
  • Víctor Cárdenas
  • Efraín Rojas
Original Article
  • 31 Downloads

Abstract

We study some cosmological models endowed with a peculiar scalar field known as stealth field. The models are constructed by considering a scalar field \(\phi \) obeying a non-minimal coupling to the gravitational field where the matter content is provided by both dust and a perfect fluid. Moreover, we analyze the stealth field implications in the cosmology by assuming a power-law behavior for the scale factor. Surprisingly, we find that stealth configurations that emerge, which in principle have no back-reaction to the background space-time, do contribute to the cosmological dynamics. We provide analytical expressions of these contributions to the energy density coming from the matter sources considered as well as for the pressure in the power-law scenario. This is a first signal that the stealth fields contributions are quantifiable. In the de Sitter cosmology, we found stealth does not have contributions either to cosmological constant or deceleration parameter. Additionally, we discuss the behaviors of the self-interaction potential for some particular values of the parameters involved.

Keywords

Stealth Cosmology 

Notes

Acknowledgements

Authors thank to Eloy Ayón-Beato for enlightening discussions. Special thanks to Carlos Manuel Rodríguez. CC acknowledges partial support by CONACyT Grant CB-2012-177519-F and grant PROMEP, CA-UV, Álgebra, Geometría y Gravitación. This work was partially supported by SNI (México). VHC acknowledges partial support by DIUV-REG-50/2013. AA acknowledges partial support by CONACyT Grant Estancias Posdoctorales Vinculadas al Fortalecimiento de Calidad del Posgrado Nacional 2017.

References

  1. Alvarez, A., Campuzano, C., Cruz, M., Rojas, E., Saavedra, J.: Gen. Relativ. Gravit. 48(12), 165 (2016).  https://doi.org/10.1007/s10714-016-2158-7 ADSCrossRefGoogle Scholar
  2. Astashenok, A.V., Odintsov, S.D.: Phys. Lett. B 718, 1194 (2013).  https://doi.org/10.1016/j.physletb.2012.12.058 ADSCrossRefGoogle Scholar
  3. Ayón-Beato, E., Martínez, C., Troncoso, R., Zanelli, J.: Phys. Rev. D 71, 104037 (2005).  https://doi.org/10.1103/PhysRevD.71.104037 ADSMathSciNetCrossRefGoogle Scholar
  4. Ayón-Beato, E., Martínez, R., Zanelli, J.: Gen. Relativ. Gravit. 38(1), 145 (2006).  https://doi.org/10.1007/s10714-005-0213-x ADSCrossRefGoogle Scholar
  5. Ayón-Beato, E., García, A.A., Ramírez-Baca, P.I., Terrero-Escalante, C.A.: Phys. Rev. D 88(6), 063523 (2013).  https://doi.org/10.1103/PhysRevD.88.063523 ADSCrossRefGoogle Scholar
  6. Ayón-Beato, E., Hassaïne, M., Juárez-Aubry, M.M.: Preprint (2015). 1506.03545 [gr-qc]
  7. Ayón-Beato, A.A., Ramírez-Baca, P.I., Terrero-Escalante, C.A.: Phys. Rev. D 97(4), 043505 (2018).  https://doi.org/10.1103/PhysRevD.97.043505 ADSMathSciNetCrossRefGoogle Scholar
  8. Babichev, E., Charmousis, C.: J. High Energy Phys. 1408, 106 (2014).  https://doi.org/10.1007/JHEP08(2014)106 ADSCrossRefGoogle Scholar
  9. Babichev, E., Charmousis, C., Hassaïne, M.: J. Cosmol. Astropart. Phys. 1505, 031 (2015).  https://doi.org/10.1088/1475-7516/2015/05/031 ADSCrossRefGoogle Scholar
  10. Banerjee, N., Jain, R.K., Jatkar, D.P.: Gen. Relativ. Gravit. 40, 93 (2008).  https://doi.org/10.1088/1475-7516/2015/05/031 ADSCrossRefGoogle Scholar
  11. Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002).  https://doi.org/10.1103/PhysRevD.66.043507 ADSCrossRefGoogle Scholar
  12. Bravo Gaete, M., Hassaïne, M.: J. High Energy Phys. 1311, 177 (2013a).  https://doi.org/10.1007/JHEP11(2013)177 ADSCrossRefGoogle Scholar
  13. Bravo Gaete, M., Hassaïne, M.: Phys. Rev. D 88, 104011 (2013b).  https://doi.org/10.1103/PhysRevD.88.104011 ADSCrossRefGoogle Scholar
  14. Bravo-Gaete, M., Hassaïne, M.: Phys. Rev. D 90(2), 024008 (2014).  https://doi.org/10.1103/PhysRevD.90.024008 ADSCrossRefGoogle Scholar
  15. Callan, C.G. Jr. Coleman, S.R., Jackiw, R.: Ann. Phys. 59, 42 (1970).  https://doi.org/10.1016/0003-4916(70)90394-5 ADSCrossRefGoogle Scholar
  16. Campuzano, C., Cárdenas, V.H., Herrera, R.: Eur. Phys. J. C 76(12), 698 (2016).  https://doi.org/10.1140/epjc/s10052-016-4546-2 ADSCrossRefGoogle Scholar
  17. Charmousis, C., Copeland, E.J., Padilla, A., San, P.M.: Phys. Rev. Lett. 108, 051101 (2012).  https://doi.org/10.1103/PhysRevLett.108.051101 ADSCrossRefGoogle Scholar
  18. Cisterna, A., Hassaïne, M., Oliva, J., Rinaldi, M.: Phys. Rev. D 90(10), 104039 (2016).  https://doi.org/10.1103/PhysRevD.94.104039 ADSCrossRefGoogle Scholar
  19. Cordero, R., Vilenkin, A.: Phys. Rev. D 65, 083519 (2002).  https://doi.org/10.1103/PhysRevD.65.083519 ADSMathSciNetCrossRefGoogle Scholar
  20. de Haro, S., Papadimitriou, I., Petkou, A.C.: Phys. Rev. Lett. 98, 231601 (2007) ADSCrossRefGoogle Scholar
  21. Faraoni, V., Zambrano-Moreno, A.F.: Phys. Rev. D 81, 124050 (2010).  https://doi.org/10.1103/PhysRevD.81.124050 ADSCrossRefGoogle Scholar
  22. Frieman, J.A., Hill, C.T., Stebbins, A., Waga, I.: Phys. Rev. Lett. 75, 207 (1995).  https://doi.org/10.1103/PhysRevLett.75.2077 ADSCrossRefGoogle Scholar
  23. Hassaïne, M.: Phys. Rev. D 89(4), 044009 (2014).  https://doi.org/10.1103/PhysRevD.89.044009 ADSCrossRefGoogle Scholar
  24. Kamenshchik, A.Yu., Moschella, U., Pasquier, V.: Phys. Lett. B 511, 265 (2001).  https://doi.org/10.1016/S0370-2693(01)00571-8 ADSCrossRefGoogle Scholar
  25. Maeda, H., Maeda, K.I.: Phys. Rev. D 86, 124045 (2012).  https://doi.org/10.1103/PhysRevD.86.124045 ADSCrossRefGoogle Scholar
  26. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999).  https://doi.org/10.1086/307221 ADSCrossRefGoogle Scholar
  27. Quinzacara, C., Meza, P., Sampson, A., Valenzuela, M.: Eur. Phys. J. C 78(11), 950 (2018).  https://doi.org/10.1140/epjc/s10052-018-6441-5 ADSCrossRefGoogle Scholar
  28. Quinzacara, C., Meza, P., Sampson, A., Valenzuela, M.: Preprint (2019). 1904.00494 [hep-th]
  29. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988).  https://doi.org/10.1103/PhysRevD.37.3406 ADSCrossRefGoogle Scholar
  30. Ries, A.G., et al.: Astron. J. 116, 1009 (1998).  https://doi.org/10.1086/300499 ADSCrossRefGoogle Scholar
  31. Sahni, V., Wang, L.-M.: Phys. Rev. D 62, 103517 (2000).  https://doi.org/10.1103/PhysRevD.62.103517 ADSCrossRefGoogle Scholar
  32. Scherrer, R.J.: Phys. Rev. Lett. 93, 011301 (2004).  https://doi.org/10.1103/PhysRevLett.93.011301 ADSCrossRefGoogle Scholar
  33. Schmidt, B.P.: Astrophys. J. 507, 46 (1998).  https://doi.org/10.1086/306308 ADSCrossRefGoogle Scholar
  34. Smolić, I.: Phys. Rev. D 97(8), 084041 (2018).  https://doi.org/10.1103/PhysRevD.97.084041 ADSMathSciNetCrossRefGoogle Scholar
  35. Sokolowski, L.M.: Acta Phys. Pol. B 35, 587 (2004) ADSGoogle Scholar
  36. Steinhardt, P.J., Wang, L.-M., Zlatev, I.: Phys. Rev. D 59, 123504 (1999).  https://doi.org/10.1103/PhysRevD.59.123504 ADSCrossRefGoogle Scholar
  37. Turner, M.S., White, M.J.: Phys. Rev. D 56(8), 4439 (1997).  https://doi.org/10.1103/PhysRevD.56.R4439 ADSCrossRefGoogle Scholar
  38. Wetterich, C.: Nucl. Phys. B 302, 668 (1988).  https://doi.org/10.1016/0550-3213(88)90193-9 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Abigail Alvarez
    • 1
  • Cuauhtemoc Campuzano
    • 1
  • Víctor Cárdenas
    • 2
  • Efraín Rojas
    • 1
  1. 1.Facultad de FísicaUniversidad VeracruzanaXalapaMexico
  2. 2.Instituto de Física y AstronomíaUniversidad de ValparaísoValparaísoChile

Personalised recommendations