Advertisement

Optical polarization properties of February 2010 outburst of the blazar Mrk 421

  • K. K. SinghEmail author
  • P. J. Meintjes
  • B. van Soelen
  • F. A. Ramamonjisoa
  • B. Vaidya
Original Article
  • 17 Downloads

Abstract

In this paper, we explore the behavior of optical polarization during the multi-wavelength outburst of the blazar Mrk 421 detected in February 2010. We use optical polarization measurements in the wavelength range 500–700 nm from SPOL observations available between January 1, 2010 and March 31, 2010 (MJD 55197-55286) including the period of multi-wavelength flaring activity detected from the source around February 16–17, 2010 (MJD 55243-55244). We also use near simultaneous optical and radio flux measurements from SPOL in V and R bands and OVRO at 15 GHz respectively. We find that the emissions in the optical and radio bands do not show any significant change in the source activity unlike at X-ray and \(\gamma \)-ray energies during the outburst. The optical and radio flux measurements are found to be consistent with the long term quiescent state emission of the source. Moreover, the linear polarization in the wavelength range 500–700 nm decreases to a minimum value of 1.6\(\%\) during the X-ray and \(\gamma \)-ray outburst which is significantly lower than the long term average value of \(\sim 4.2\%\). The angle of polarization varies between \(114^{\circ }\mbox{--}163^{\circ }\) with a preferred average value of \(\sim 137^{\circ }\) during this period. We estimate the degree of polarization intrinsic to the jet taking into account the host galaxy contamination in R band and compare this with the theoretical synchrotron polarization estimated for a power law distribution of relativistic electrons gyrating in an emission region filled with ordered and chaotic magnetic fields. The intrinsic linear polarization estimated for different epochs during the above period is found to be consistent with the theoretical synchrotron polarization produced by the relativistic electrons with power law spectral index \(\sim 2.2\). We find that the behavior of optical polarization possibly supports the two emission zone hypothesis for blazars in which X-ray and \(\gamma \)-rays are produced in one region whereas the optical emission takes place from another region permeated with ordered and chaotic magnetic fields. The decrease in linear polarization during the X-ray and \(\gamma \)-ray outburst can be attributed to the sudden dominance of chaotic magnetic field over the ordered field in the optical emission region in the relativistic jet of the blazar Mrk 421.

Keywords

Galaxies: active BL Lacertae objects: individual (Mrk 421) Optical: general Radiation mechanism: nonthermal 

Notes

Acknowledgements

We thank the anonymous reviewer for his/her useful suggestions to improve the contents of the manuscript. This research has made use of data from the OVRO 40-m monitoring program (Richards et al. 2011) which is supported in part by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G and NSF grants AST-0808050 and AST-1109911. Data from the Steward Observatory spectropolarimetric monitoring project were used. This program is supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, NNX12AO93G, and NNX15AU81G.

References

  1. Abdo, A.A., et al.: Astrophys. J. 736, 131 (2011) ADSCrossRefGoogle Scholar
  2. Ackermann, M., et al.: Astrophys. J. 824, L20 (2016) ADSCrossRefGoogle Scholar
  3. Aharonian, F.A.: Mon. Not. R. Astron. Soc. 332, 215 (2002) ADSCrossRefGoogle Scholar
  4. Bartoli, B., et al.: Astrophys. J. Suppl. Ser. 222, 6 (2016) ADSCrossRefGoogle Scholar
  5. Begelman, M.C.: Astrophys. J. 493, 291 (1998) ADSCrossRefGoogle Scholar
  6. Björnsson, C.I.: Mon. Not. R. Astron. Soc. 216, 241 (1985) ADSCrossRefGoogle Scholar
  7. Blinov, D., et al.: Mon. Not. R. Astron. Soc. 462, 1775 (2016) ADSCrossRefGoogle Scholar
  8. Burn, B.J.: Mon. Not. R. Astron. Soc. 133, 67 (1966) ADSCrossRefGoogle Scholar
  9. Carnerero, M.I., et al.: Mon. Not. R. Astron. Soc. 472, 3789 (2017) ADSCrossRefGoogle Scholar
  10. Cui, W.: Astrophys. J. 605, 662 (2004) ADSCrossRefGoogle Scholar
  11. Dermer, C.D., et al.: Astron. Astrophys. 256, L27 (1992) ADSGoogle Scholar
  12. Fan, J.H., et al.: Publ. Astron. Soc. Jpn. 5, 707 (2008) ADSCrossRefGoogle Scholar
  13. Fortson, L., et al.: AIP Conf. Proc. 1505, 514 (2012) ADSCrossRefGoogle Scholar
  14. Fraija, N.: Astropart. Phys. 71, 1 (2015) ADSCrossRefGoogle Scholar
  15. Fraija, N., Marinelli, A.: Astropart. Phys. 70, 54 (2015) ADSCrossRefGoogle Scholar
  16. Fraija, N., et al.: Astrophys. J. Suppl. Ser. 232, 7 (2017) ADSCrossRefGoogle Scholar
  17. Ghisellini, G., et al.: Mon. Not. R. Astron. Soc. 299, 433 (1998) ADSCrossRefGoogle Scholar
  18. Heidt, J., Wagner, S.J.: Astron. Astrophys. 305, 42 (1996) ADSGoogle Scholar
  19. Isobe, N., et al.: Publ. Astron. Soc. Jpn. 62, L55 (2010) ADSCrossRefGoogle Scholar
  20. Jones, T.W., et al.: Astrophys. J. 290, 627 (1985) ADSCrossRefGoogle Scholar
  21. Jorstad, S.G., et al.: Astron. J. 773, 147 (2013) CrossRefGoogle Scholar
  22. Kovalev, Y.Y., et al.: Astron. J. 130, 2473 (2005) ADSCrossRefGoogle Scholar
  23. Kulshrestha, A., et al.: Astron. Astrophys. Suppl. Ser. 71, 565 (1987) ADSGoogle Scholar
  24. Legg, M.P.C., Westfold, K.C.: Astrophys. J. 154, 499 (1968) ADSCrossRefGoogle Scholar
  25. Maraschi, L., et al.: Astrophys. J. 397, L5 (1992) ADSCrossRefGoogle Scholar
  26. Mücke, A., et al.: Astropart. Phys. 18, 593 (2003) ADSCrossRefGoogle Scholar
  27. Niinuma, K., et al.: Astrophys. J. 759, 84 (2012) ADSCrossRefGoogle Scholar
  28. Nilsson, K., et al.: Astron. Astrophys. 475, 199 (2007) ADSCrossRefGoogle Scholar
  29. Punch, M., et al.: Nature 358, 477 (1992) ADSCrossRefGoogle Scholar
  30. Richards, J.L., et al.: Astrophys. J. Suppl. Ser. 194, 29 (2011) ADSCrossRefGoogle Scholar
  31. Sbarufatti, B., et al.: Astrophys. J. 635, 173 (2005) ADSCrossRefGoogle Scholar
  32. Shukla, A., et al.: Astron. Astrophys. 541, 140 (2012) CrossRefGoogle Scholar
  33. Sikora, M., et al.: Astrophys. J. 421, 153 (1994) ADSCrossRefGoogle Scholar
  34. Singh, K.K., et al.: New Astron. 17, 679 (2012) ADSCrossRefGoogle Scholar
  35. Singh, K.K., et al.: Astropart. Phys. 61, 32 (2015) ADSCrossRefGoogle Scholar
  36. Singh, K.K., et al.: New Astron. 54, 24 (2017) ADSCrossRefGoogle Scholar
  37. Singh, K.K., et al.: Astropart. Phys. 103, 122 (2018) ADSCrossRefGoogle Scholar
  38. Singh, K.K., et al.: Adv. Space Res. 63, 766 (2019) ADSCrossRefGoogle Scholar
  39. Smith, P.S., et al.: arXiv:0912.3621 (2009)
  40. Sokoloff, D.D., et al.: Mon. Not. R. Astron. Soc. 299, 189 (1998) ADSCrossRefGoogle Scholar
  41. Tluczykont, M., et al.: arXiv:1106.1035 (2011)
  42. Urry, C.M., Padovani, P.: Publ. Astron. Soc. Pac. 107, 803 (1995) ADSCrossRefGoogle Scholar
  43. Vaughan, S., et al.: Mon. Not. R. Astron. Soc. 345, 1271 (2003) ADSCrossRefGoogle Scholar
  44. Visvanathan, N., Wills, B.J.: Astron. J. 116, 2119 (1998) ADSCrossRefGoogle Scholar
  45. Westfold, K.C.: Astrophys. J. 130, 241 (1959) ADSMathSciNetCrossRefGoogle Scholar
  46. Zakamska, N.L., et al.: Astron. J. 129, 1212 (2005) ADSCrossRefGoogle Scholar
  47. Zhang, H., et al.: Astrophys. J. 817, 63 (2016) ADSCrossRefGoogle Scholar
  48. Zheng, Y.G., et al.: Mon. Not. R. Astron. Soc. 442, 3166 (2014) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • K. K. Singh
    • 1
    • 2
    Email author
  • P. J. Meintjes
    • 1
  • B. van Soelen
    • 1
  • F. A. Ramamonjisoa
    • 1
  • B. Vaidya
    • 3
  1. 1.Physics DepartmentUniversity of the Free StateBloemfonteinSouth Africa
  2. 2.Astrophysical Sciences DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Centre for AstronomyIndian Institute of Technology IndoreSimrol, IndoreIndia

Personalised recommendations