Advertisement

Dynamical environment in the triple asteroid system 87 Sylvia

  • Yu JiangEmail author
Original Article
  • 34 Downloads

Abstract

We investigate the dynamical environment in the first announced triple asteroid system 87 Sylvia. The 3D shape of the primary is rebuilt from shape data using the polyhedral model method. The dynamical characteristics of the primary, such as the surface height, the surface effective potential, the surface gravitational acceleration, the structure of the zero-velocity surfaces, and the locations and stability of the equilibrium points, have been investigated. Five equilibrium points are in the potential of 87 Sylvia. Both unstable periodic orbits and stable periodic orbits coexist near the surface of the primary of the triple asteroid system 87 Sylvia. Under the full perturbation force of two moonlets, the semi-major axis, the eccentricity, the inclination, and the mechanical energy vary periodically and have no secular terms. Among them, the semi-major axis, the eccentricity, and the mechanical energy have two period terms, namely, a long period term and a short period term; the inclination has three period terms, i.e., a long period term, a short period term, and an intermediate period term. Unlike these orbital parameters, the argument of the pericenter and the longitude of the ascending node have a secular term, a long period term and a short period term. A simulation of the trajectories of 1000 grains generated in the system considering the gravity of the irregular shape and two moonlets of the primary has been presented. The grains may impact on the surface of the primary, escape the system, or move in the system.

Keywords

Dynamical environment Triple asteroid 87 Sylvia Zero-velocity surfaces Equilibrium points Orbits 

Notes

Acknowledgements

This project is funded by China Postdoctoral Science Foundation- General Program (No. 2017M610875), the National Natural Science Foundation of China (No. 11772356), and the National Overseas Study for Senior Research Scholar, Visiting Scholar, and Postdoctoral Program (CSC No. 201703170036).

References

  1. Beauvalet, L., Marchis, F.: Multiple asteroid systems (45) Eugenia and (87) Sylvia: sensitivity to external and internal perturbations. Icarus 241, 13–25 (2014) ADSCrossRefGoogle Scholar
  2. Berthier, J., Vachier, F., Marchis, F., Ďurech, J., Carry, B.: Physical and dynamical properties of the main belt triple asteroid (87) Sylvia. Icarus 239(1), 118–130 (2014) ADSCrossRefGoogle Scholar
  3. Conway, J.T.: Analytical solution from vector potentials for the gravitational field of a general polyhedron. Celest. Mech. Dyn. Astron. 121(1), 17–38 (2015) ADSMathSciNetCrossRefGoogle Scholar
  4. Correia, A.C.: Chaotic dynamics in the (47171) Lempo triple system. Icarus 305, 250–261 (2018) ADSCrossRefGoogle Scholar
  5. Drummond, J.D., Reynolds, O.R., Buckman, M.D.: The orbit and size of (87) Sylvia’s Romulus from the 2015 Apparition. Icarus 276, 107–115 (2016) ADSCrossRefGoogle Scholar
  6. D’Urso, M.G.: On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J. Geod. 87(3), 239–252 (2013) ADSMathSciNetCrossRefGoogle Scholar
  7. D’Urso, M.G.: Analytical computation of gravity effects for polyhedral bodies. J. Geod. 88(1), 13–29 (2014) ADSCrossRefGoogle Scholar
  8. Fang, J., Margot, J.L., Rojo, P.: Orbits, masses, and evolution of main belt triple (87) Sylvia. Astron. J. 144(2), 648–659 (2012) CrossRefGoogle Scholar
  9. Frouard, J., Compère, A.: Instability zones for satellites of asteroids: the example of the (87) Sylvia system. Icarus 220(1), 149–161 (2012) ADSCrossRefGoogle Scholar
  10. Jiang, Y., Baoyin, H., Li, J., Li, H.: Orbits and manifolds near the equilibrium points around a rotating asteroid. Astrophys. Space Sci. 349(1), 83–106 (2014) ADSCrossRefGoogle Scholar
  11. Jiang, Y., Baoyin, H., Li, H.: Collision and annihilation of relative equilibrium points around asteroids with a changing parameter. Mon. Not. R. Astron. Soc. 452(4), 3924–3931 (2015) ADSCrossRefGoogle Scholar
  12. Jiang, Y., Zhang, Y., Baoyin, H., Li, J.: Dynamical configurations of celestial systems comprised of multiple irregular bodies. Astrophys. Space Sci. 361(9), 306 (2016) ADSMathSciNetCrossRefGoogle Scholar
  13. Kaasalainen, M., Torppa, J., Piironen, J.: Models of twenty asteroids from photometric data. Icarus 159, 369–395 (2002) ADSCrossRefGoogle Scholar
  14. Macau, E.E.N., Winter, O.C., Campos, V.H.F., et al.: The aster mission: exploring for the first time a triple system asteroid. In: 62nd International Astronautical Congress 2011 IAC 2011, vol. 5, pp. 3669–3677 (2011) Google Scholar
  15. Marchis, F., Descamps, P., Hestroffer, D., Berthier, J.: Discovery of the triple asteroidal system 87 Sylvia. Nature 436(7052), 822–824 (2005) ADSCrossRefGoogle Scholar
  16. Marchis, F., Kaasalainen, M., Hom, E.F.Y., Berthier, J., Enriquez, J., Hestroffer, D., et al.: Shape, size and multiplicity of main-belt asteroids: I. Keck adaptive optics survey. Icarus 185(1), 39–63 (2006) ADSCrossRefGoogle Scholar
  17. Richardson, D.C., Michel, P., Walsh, K.J., et al.: Numerical simulations of asteroids modelled as gravitational aggregates with cohesion. Planet. Space Sci. 57(2), 183–192 (2009) ADSCrossRefGoogle Scholar
  18. Scheeres, D.J., Ostro, S.J., Hudson, R.S., Werner, R.A.: Orbits close to asteroid 4769 Castalia. Icarus 121, 67–87 (1996) ADSCrossRefGoogle Scholar
  19. Szalay, J.R., Horányi, M.: The impact ejecta environment of near Earth asteroids. Astrophys. J. Lett. 830(2), L29 (2016) ADSCrossRefGoogle Scholar
  20. Tsoulis, D.: Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics 77(2), 1–11 (2012) ADSCrossRefGoogle Scholar
  21. Vasilkova, O.: Three-dimensional periodic motion in the vicinity of the equilibrium points of an asteroid. Astron. Astrophys. 430(2), 713–723 (2005) ADSCrossRefGoogle Scholar
  22. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65(3), 313–344 (1997) ADSCrossRefGoogle Scholar
  23. Winter, O.C., Boldrin, L.A.G., Neto, E.V., Martins, R.V., Winter, S.M.G., Gomes, R.S., et al.: On the stability of the satellites of asteroid 87 Sylvia. Mon. Not. R. Astron. Soc. 395(1), 218–227 (2009) ADSCrossRefGoogle Scholar
  24. Yu, Y., Baoyin, H.: Orbital dynamics in the vicinity of asteroid 216 Kleopatra. Astron. J. 143(3), 62–70 (2012a) ADSCrossRefGoogle Scholar
  25. Yu, Y., Baoyin, H.: Generating families of 3D periodic orbits about asteroids. Mon. Not. R. Astron. Soc. 427(1), 872–881 (2012b) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Astronautic DynamicsXi’an Satellite Control CenterXi’anChina
  2. 2.School of Aerospace EngineeringTsinghua UniversityBeijingChina

Personalised recommendations