Modeling and predicting seasonal ionospheric variations in Turkey using artificial neural network (ANN)

  • Samed InyurtEmail author
  • Aliihsan Sekertekin
Original Article


The aim of this study was to model and predict seasonal ionospheric total electron content (TEC) using artificial neural network (ANN). Within this scope, GPS observations acquired from ANKR GPS station (Turkey) in 2015 were utilized to model TEC variations. Considering all data for each season, training and testing data were set as 80% and 10%, respectively, and the rest of the data were used to estimate TEC values using extracted mathematical models of ANN method. Day of Year (DOY), hour, F107 cm index (solar activity), Kp index and DsT index (magnetic storm index) were considered as the input parameters in ANN. The performances of ANN models were evaluated using RMSE and \(R\) statistical metrics for each season. As a result of the analyses, considering the prediction results, ANN presented more successful predictions of TEC values in winter and autumn than summer and spring with RMSE 3.92 TECU and 3.97 TECU, respectively. On the other hand the \(R\) value of winter data set (0.74) was lower than the autumn data set (0.88) while the RMSE values were opposite. This situation can be caused by the accuracy and precision of data sets. The results showed that the ANN model predicted GPS-TEC in a good agreement for ANKR station.


Total Electron Content (TEC) Artificial Neural Network (ANN) Ionosphere Modeling 



  1. Al-Shammari, E.T., Mohammadi, K., Keivani, A., Ab Hamid, S.H., Akib, S., Shamshirband, S., Petković, D.: Prediction of daily dewpoint temperature using a model combining the support vector machine with firefly algorithm. J. Irrig. Drain. Eng. 142(5), 04016013 (2016) CrossRefGoogle Scholar
  2. Belehaki, A., Stanislawska, I., Lilensten, J.: An overview of ionosphere—thermosphere models available for space weather purposes. Space Sci. Rev. 147(3–4), 271–313 (2009) ADSCrossRefGoogle Scholar
  3. Bilgili, M.: Prediction of soil temperature using regression and artificial neural network models. Meteorol. Atmos. Phys. 110(1–2), 59–70 (2010) ADSCrossRefGoogle Scholar
  4. Bilgili, M., Sahin, B., Sangun, L.: Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models. Environ. Monit. Assess. 185(1), 347–358 (2013) CrossRefGoogle Scholar
  5. Cander, L.R.: Artificial neural network applications in ionospheric studies. Ann. Geophys. 41(5–6), 757–766 (1998) Google Scholar
  6. Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., Radicella, S.M.: Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 81(2), 111–120 (2007) ADSCrossRefGoogle Scholar
  7. Guo, J., Li, W., Liu, X., Kong, Q., Zhao, C., Guo, B.: Temporal-spatial variation of global GPS-derived total electron content, 1999–2013. PLoS ONE 10(7), e0133378 (2015). CrossRefGoogle Scholar
  8. Habarulema, J.B., McKinnell, L.A., Cilliers, P.J.: Prediction of global positioning system total electron content using neural networks over South Africa. J. Atmos. Sol.-Terr. Phys. 69(15), 1842–1850 (2007) ADSCrossRefGoogle Scholar
  9. Hernandez-Pajares, M., Juan, J.M., Sanz, J.: Neural network modelling of the ionospheric electron content at global scale using GPS. Radio Sci. 32, 1081–1090 (1997) ADSCrossRefGoogle Scholar
  10. Huang, Z., Yuan, H.: Ionospheric single-station TEC short-term forecast using RBF neural network. Radio Sci. 49(4), 283–292 (2014) ADSCrossRefGoogle Scholar
  11. Inyurt, S., Yildirim, O., Mekik, C.: Comparison between IRI-2012 and GPS-TEC observations over the western Black Sea. Ann. Geophys. 35(4), 817–824 (2017) ADSCrossRefGoogle Scholar
  12. Jee, G., Lee, H.B., Solomon, S.C.: Global ionospheric total electron contents (TECs) during the last two solar minimum periods. J. Geophys. Res. Space Phys. 119(3), 2090–2100 (2014) ADSCrossRefGoogle Scholar
  13. Kisi, O., Sanikhani, H., Zounemat-Kermani, M., Niazi, F.: Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Comput. Electron. Agric. 115, 66–77 (2015) CrossRefGoogle Scholar
  14. Kisi, O., Genc, O., Dinc, S., Zounemat-Kermani, M.: Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Comput. Electron. Agric. 122, 112–117 (2016) CrossRefGoogle Scholar
  15. Mansouri, I., Ozbakkaloglu, T., Kisi, O., Xie, T.: Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques. Mater. Struct. 49(10), 4319–4334 (2016) CrossRefGoogle Scholar
  16. Maruyama, T.: Regional reference total electron content model over Japan based on neural network mapping techniques. Ann. Geophys. 25(12), 2609–2614 (2008) ADSCrossRefGoogle Scholar
  17. Samadianfard, S., Asadi, E., Jarhan, S., Kazemi, H., Kheshtgar, S., Kisi, O., Manaf, A.A.: Wavelet neural networks and gene expression programming models to predict short-term soil temperature at different depths. Soil Tillage Res. 175, 37–50 (2018) CrossRefGoogle Scholar
  18. Song, R., Zhang, X., Zhou, C., Liu, J., He, J.: Predicting TEC in China based on the neural networks optimized by genetic algorithm. Adv. Space Res. 62(4), 745–759 (2018) ADSCrossRefGoogle Scholar
  19. Tariku, Y.A.: Patterns of GPS-TEC variation over low-latitude regions (African sector) during the deep solar minimum (2008 to 2009) and solar maximum (2012 to 2013) phases. Earth Planets Space 67, 35 (2015) ADSCrossRefGoogle Scholar
  20. Tebabal, A., Radicella, S.M., Nigussie, M., Damtie, B., Nava, B., Yizengaw, E.: Local TEC modelling and forecasting using neural networks. J. Atmos. Sol.-Terr. Phys. 172, 143–151 (2018) ADSCrossRefGoogle Scholar
  21. Themens, D.R., Jayachandran, P.T.: Solar activity variability in the IRI at high latitudes: comparisons with GPS total electron content. J. Geophys. Res. Space Phys. 121(4), 3793–3807 (2016) ADSCrossRefGoogle Scholar
  22. Tulasi Ram, S., Sai Gowtam, V., Mitra, A., Reinisch, B.: The improved two-dimensional artificial neural network-based ionospheric model (ANNIM). J. Geophys. Res. Space Phys. 123(7), 5807–5820 (2018) ADSCrossRefGoogle Scholar
  23. Tulunay, E., Senalp, E.T., Radicella, S.M., Tulunay, Y.: Forecasting total electron content maps by neural network technique. Radio Sci. 41(4), 1–12 (2006) CrossRefGoogle Scholar
  24. Wang, L., Kisi, O., Zounemat-Kermani, M., Salazar, G.A., Zhu, Z., Gong, W.: Solar radiation prediction using different techniques: model evaluation and comparison. Renew. Sustain. Energy Rev. 61, 384–397 (2016) CrossRefGoogle Scholar
  25. Watthanasangmechai, K., Supnithi, P., Lerkvaranyu, S., Tsugawa, T., Nagatsuma, T., Maruyama, T.: TEC prediction with neural network for equatorial latitude station in Thailand. Earth Planets Space 64(6), 473–483 (2012) ADSCrossRefGoogle Scholar
  26. Yang, N., Le, H., Liu, L.: Statistical analysis of ionospheric mid-latitude trough over the northern hemisphere derived from GPS total electron content data. Earth Planets Space 67(1), 196 (2015) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Zonguldak Bulent Ecevit UniversityDepartment of Geomatics EngineeringZonguldakTurkey
  2. 2.Cukurova UniversityCeyhan Engineering Faculty, Department of Geomatics EngineeringAdanaTurkey

Personalised recommendations