Families of Earth–Moon trajectories with applications to transfers towards Sun–Earth libration point orbits

  • Qiwei Guo
  • Hanlun LeiEmail author
Original Article


We studied Earth–Moon transfer trajectories in the circular restricted three-body problem (CRTBP) from the viewpoint of families and considered their applications in transferring a spacecraft from the Earth to periodic orbits around Sun–Earth libration point \(L_{2}\) (SE–L2). Initially, twelve families of trajectories with transfer time shorter than fifty days are identified in the Earth–Moon system. By connecting these transfers with stable manifolds of the target orbit, low-energy transfers from the low Earth orbit to a small-amplitude periodic orbit around SE–L2 are determined in two separate CRTBPs (Earth–Moon and Sun–Earth CRTBPs). Then, taking the patched trajectories as initial guesses and introducing a small maneuver at the perilune, we optimize the whole transfer trajectories in the Sun–Earth–Moon–Spacecraft system. Results indicate that it is possible to realize low-energy transfers to small-amplitude orbits around SE–L2 by patching the Earth–Moon transfers with stable manifolds of the target orbits.


Libration point orbits Low-energy transfers Trajectory optimization 



This work is carried out with the financial support of the National Natural Science Foundation of China (No. 11603011) and the National Basic Research Program 973 of China (2015CB857100), and the National Defense Scientific Research Fund (No. 2016110C019).


  1. Barden, B., Howell, K., Lo, M.: Astrodynamics Conference, 3602 (1996) Google Scholar
  2. Belbruno, E.A., Miller, J.K.: J. Guid. Control Dyn. 16(4), 770 (1993) ADSCrossRefGoogle Scholar
  3. Belló, M., Gómez, G., Masdemont, J.J.: Space Manifold Dynamics. Springer, Berlin (2010) zbMATHGoogle Scholar
  4. Capuzzo-Dolcetta, R., Giancotti, M.: Celest. Mech. Dyn. Astron. 115(3), 215 (2013) ADSCrossRefGoogle Scholar
  5. Cuevas, O., Kraft-Newman, L., Mesarch, M., et al.: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 4425 (2002) Google Scholar
  6. Deprit, A., Henrard, J.: Astron. J. 172, 158 (1967) ADSCrossRefGoogle Scholar
  7. Doedel, E.J., Paffenroth, R.C., Keller, H.B., et al.: Int. J. Bifurc. Chaos 13(06), 1353 (2003) CrossRefGoogle Scholar
  8. Dunham, D.W., Farquhar, R.W.: Libration Point Orbits and Applications. World Scientific, Singapore (2003) Google Scholar
  9. Farquhar, R.W.: The control and use of libration-point satellites (1968) Google Scholar
  10. Fehlberg, E.: Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize control (1968) Google Scholar
  11. Gómez, G., Jorba, A., Masdemont, J., et al.: Celest. Mech. Dyn. Astron. 56(4), 541 (1993) ADSCrossRefGoogle Scholar
  12. Gómez, G., Marcote, M., Masdemont, J.J.: Acta Astronaut. 56(7), 652 (2005) ADSCrossRefGoogle Scholar
  13. Howell, K.C.: Celest. Mech. 32(1), 53 (1984) ADSCrossRefGoogle Scholar
  14. Koon, W.S., Lo, M.W., Marsden, J.E., et al.: Dynamical Systems, the Three Body Problem and Space Mission Design. Springer, New York (2006) zbMATHGoogle Scholar
  15. Lei, H., Xu, B., Sun, Y.: Adv. Space Res. 51(5), 917 (2013) ADSCrossRefGoogle Scholar
  16. Li, M., Zheng, J.: Acta Astronaut. 66(9–10), 1481 (2010) Google Scholar
  17. Liu, C.B., Hou, X.Y., Liu, L.: Adv. Space Res. 40(1), 76 (2007) ADSCrossRefGoogle Scholar
  18. Marson, R., Pontani, M., Perozzi, E., et al.: Celest. Mech. Dyn. Astron. 106(2), 117 (2010) ADSCrossRefGoogle Scholar
  19. Mengali, G., Quarta, A.A.: J. Guid. Control Dyn. 28(2), 209 (2005) ADSCrossRefGoogle Scholar
  20. Onozaki, K., Yoshimura, H., Ross, S.D.: Adv. Space Res. 60(10), 2117 (2017) ADSCrossRefGoogle Scholar
  21. Oshima, K., Yanao, T.: AAS/AIAA Space Flight Mechanics Meeting, AAS. 14 (2014) Google Scholar
  22. Ozimek, M.T., Howell, K.C.: J. Guid. Control Dyn. 33(2), 533 (2010) ADSCrossRefGoogle Scholar
  23. Peng, H., Gao, Q., Wu, Z., et al.: Adv. Space Res. 51(11), 2093 (2013) ADSCrossRefGoogle Scholar
  24. Qi, Y., Xu, S.: Aerosp. Sci. Technol. 55, 282 (2016a) CrossRefGoogle Scholar
  25. Qi, Y., Xu, S.: Celest. Mech. Dyn. Astron. 125(3), 333 (2016b) ADSCrossRefGoogle Scholar
  26. Qi, Y., Xu, S., Qi, R.: Acta Astronaut. 133, 145 (2017) ADSCrossRefGoogle Scholar
  27. Salmani, M., Büskens, C.: Acta Astronaut. 69(9–10), 882 (2011) ADSCrossRefGoogle Scholar
  28. Sousa-Silva, P., Terra, M.O., Ceriotti, M.: Astrophys. Space Sci. 363(10), 210 (2018) ADSCrossRefGoogle Scholar
  29. Szebehely, V.: Theory of Orbits: the Restricted Problem of Three Bodies. Academic Press, New York (2006) zbMATHGoogle Scholar
  30. Tantardini, M., Fantino, E.M., Ren, Y.: Celest. Mech. Dyn. Astron. 108(3), 215 (2010) ADSCrossRefGoogle Scholar
  31. Topputo, F.: Celest. Mech. Dyn. Astron. 117(3), 279 (2013) ADSMathSciNetCrossRefGoogle Scholar
  32. Uphoff, C.W.: Adv. Astronaut. Sci. 69, 333 (1989) Google Scholar
  33. Wilson, R.S., Howell, K.C.: J. Spacecr. Rockets 35(2), 191 (1998) ADSCrossRefGoogle Scholar
  34. Yagasaki, K.: Physica D 197(3–4), 313 (2004) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Astronomy and Space ScienceNanjing UniversityNanjingP.R. China

Personalised recommendations