Advertisement

Using single millisecond pulsar for terrestrial position determination

  • Wei Han
  • Na WangEmail author
  • Jingbo Wang
  • Jianping Yuan
  • Dalin He
Original Article
  • 34 Downloads

Abstract

With precise observatory coordinates, we can convert the site arrival times (SATs) of observed pulses to barycenter by adopting correct pulsar timing model. In this paper, we time millisecond pulsars to determine the position of the radio telescope reversely. By using data from the Parkes Pulsar Timing Array (PPTA) project, we show that the position of the Parkes radio telescope can be determined with an error of tens to hundreds of meters. In the presence of “red” timing noise, we apply generalized least-squares (GLS) solution based on “Cholesky” method to provide better position estimations. Meanwhile, we investigate the positioning accuracy with the different data spans. In order to demonstrate the feasibility of single pulsar terrestrial navigation, a few observations from PSR J0437-4715 are used to perform the position determination tests. The statistical results show an overall accuracy of ∼300 m with only three or four observations. As more observations are involved, the positioning accuracy increases significantly.

Keywords

Pulsars Timing Position determination 

Notes

Acknowledgements

The authors thank Prof. George Hobbs at CSIRO Astronomy and Space Science (CASS) in Australia and X.P. Deng at Max Planck Institute for helpful discussions. This work was supported by National Basic Research Program of China grants 973 Programs 2015CB857100, the Youth Innovation Promotion Association of Chinese Academy of Sciences, \(201^{*}\) Project of Xinjiang Uygur Autonomous Region of China for Flexibly Fetching in Upscale Talents.

References

  1. Becker, W., Kramer, M., Sesana, A.: Space Sci. Rev. 214(1), 30 (2018) ADSCrossRefGoogle Scholar
  2. Champion, D.J., Hobbs, G.B., Manchester, R.N., Edwards, R.T., Backer, D.C.: Telecommunications & Data Acquisition Progress Report 720(2), 93 (2010) Google Scholar
  3. Chester, T.J., Butman, S.A.: Telecommunications & Data Acquisition Progress Report 63, 22 (1981) Google Scholar
  4. Coles, W., Hobbs, G.B., Champion, D.J., Manchester, R.N., Verbiest, J. P. W.: Mon. Not. R. Astron. Soc. 418, 561 (2011) Google Scholar
  5. Deng, X.P., Hobbs, G.B., You, X.P., Li, M.T., Keith, M.J., et al.: Adv. Space Res. 52, 1602 (2013) ADSCrossRefGoogle Scholar
  6. Downs, G.S.: NASA Technical Reports N74-34150 (1974) Google Scholar
  7. Edwards, R.T., Hobbs, G.B., Manchester, R.N.: Mon. Not. R. Astron. Soc. 372, 1549 (2006) ADSCrossRefGoogle Scholar
  8. Hobbs, G.B., Coles, W., Manchester, R.N., Keith, M.J., Shannon, R.M., et al.: Mon. Not. R. Astron. Soc. 427, 2780 (2012) ADSCrossRefGoogle Scholar
  9. Hotan, A.W., Van Straten, W., Manchester, R.N.: Publ. Astron. Soc. Aust. 21, 302 (2004) ADSCrossRefGoogle Scholar
  10. Jarque, C.M., Bera, A.K.: Int. Stat. Rev. 55(2), 163 (1987) CrossRefGoogle Scholar
  11. Manchester, R.N., Hobbs, G.B., Teoh, A., Hobbs, M.: Astron. J. 129, 1993 (2005) ADSCrossRefGoogle Scholar
  12. Manchester, R.N.: Publ. Astron. Soc. Aust. 30, 584 (2013) CrossRefGoogle Scholar
  13. Mitchell, J.W.: AIAA Guidance, Navigation, & Control Conference (2013) Google Scholar
  14. Podsiadlowski, Ph., Pringle, J.E., Rees, M.J.: Nature 352, 783 (1991) ADSCrossRefGoogle Scholar
  15. Reardon, D.J., Hobbs, G.B., Coles, W., Levin, Y., Keith, M.J., et al.: Mon. Not. R. Astron. Soc. 455, 445 (2013) Google Scholar
  16. Sesana, A., Vecchio, A.: Phys. Rev. D 81, 1292 (2010) CrossRefGoogle Scholar
  17. Shannon, R.M., Ravi, V., Coles, W.A., Hobbs, G., Keith, M.J., Manchester, R.N., et al.: Science 342, 334 (2013) ADSCrossRefGoogle Scholar
  18. Sheikh, S.: The use of variable celestial X-ray sources for spacecraft navigation. PhD thesis, Univ. Maryland (2005) Google Scholar
  19. Shemar, S., Fraser, G., Heil, L., Hindley, D., Martindale, A., et al.: Exp. Astron. 42(2), 101 (2016) ADSCrossRefGoogle Scholar
  20. Standish, E.M.: Astron. Astrophys. 336, 381 (1998) ADSGoogle Scholar
  21. Wolszczan, A., et al.: Nature 355, 145 (1992) ADSCrossRefGoogle Scholar
  22. Zheng, S.J., Ge, M.Y., Han, D.W., Wang, W.B., Chen, Y., et al.: Sci. Sin. 47(9), 099504 (2017) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Xinjiang Astronomical ObservatoryChinese Academy of SciencesXinjiangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Radio AstronomyChinese Academy of ScienceNanjingChina
  4. 4.Xinjiang Key Laboratory of Radio AstrophysicsXinjiangChina

Personalised recommendations