Precise measurement of the light curves for space debris with wide field of view telescope

  • Rong-yu SunEmail author
  • Sheng-xian Yu
Original Article


Optical means are the main techniques for space debris observations. Wide field of view telescopes play important roles and exhibit specially high efficiency in space debris surveys and catalogue maintenance. However, due to the defects of the extreme optical design of the telescope, as well as the errors caused by non-standard photometric systems, challenges arise for the light curve acquisition and precise photometry. As the rise of the demand of rotational characteristics investigations for space debris and active debris removal, measuring the brightness variations of space debris with high accuracy is crucial and important. Under this circumstance, an improved method which measures the light curves of space debris precisely for wide field of view telescopes is proposed. In our pipeline the background stellar is optimally selected, then the local reference frame is built through consecutive frames, and the brightness variation of the object is obtained directly based on the ratio of the intensity itself and the one of reference star. Trial observations are performed and a number of raw CCD images is utilized to test the method. It is demonstrated that the proposed method exhibits a better accuracy and robustness than the standard photometric technique on measuring the light curves of space debris. It provides a new solution for precise measurement of light curves with wide field of view sensors, and deserves wide applications in researches of light curves and rotational characteristics for space debris.


Methods: data analysis Techniques: image processing Techniques: photometric Space debris 



Our work was funded by the National Natural Science Foundation of China (Grant Nos. 11533010, 11703096 and U1631133), the Youth Innovation Promotion Association of CAS (2015252), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20181515 and BK20171110).


  1. Alby, A., Boer, M., Deguine, B., et al.: Status of CNES optical observations of space debris in geostationary orbit. Adv. Space Res. 34, 1143–1149 (2004) ADSCrossRefGoogle Scholar
  2. Bertin, E., Arnouts, S.: SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996) ADSCrossRefGoogle Scholar
  3. Braun, V., Lupken, A., Flegel, S., et al.: Active debris removal of multiple priority targets. Adv. Space Res. 51, 1638–1648 (2013) ADSCrossRefGoogle Scholar
  4. Hall, D., Africano, J., Lambert, J., et al.: Time-resolved I-band photometry of calibration spheres and NaK droplets. J. Spacecr. Rockets 44, 910–919 (2007) ADSCrossRefGoogle Scholar
  5. Hog, E., Fabricius, C., Makarov, V.V., et al.: The Tycho-2 catalogue of the 2.5 million brightest stars. Astron. Astrophys. 355, 27–30 (2000) ADSGoogle Scholar
  6. Kessler, D.J., Jarvis, K.S.: Obtaining the properly weighted average albedo of orbital debris from optical and radar data. Adv. Space Res. 34, 1006–1012 (2004) ADSCrossRefGoogle Scholar
  7. Koshkin, N., Shakun, L., Burlak, N.: Ajisai spin-axis precession and rotation-period variations from photometric observations. Adv. Space Res. 60, 1389–1399 (2017) ADSCrossRefGoogle Scholar
  8. Kouprianov, V.: Distinguishing features of CCD astrometry of faint GEO objects. Adv. Space Res. 41, 1029–1038 (2008) ADSCrossRefGoogle Scholar
  9. Lidtke, A.A., Lewis, H.G., Armellin, R.: Impact of high-risk conjunctions on Active Debris Removal target selection. Adv. Space Res. 56, 1752–1764 (2015) ADSCrossRefGoogle Scholar
  10. Lu, Y., Zhang, C., Sun, R.Y., et al.: Investigations of associated multi-band observations for GEO space debris. Adv. Space Res. 59, 2501–2511 (2017) ADSCrossRefGoogle Scholar
  11. Matney, M.J., Anz-Meador, P., Foster, J.L.: Covariance correlations in collision avoidance probability calculations. Adv. Space Res. 34, 1109–1114 (2004) ADSCrossRefGoogle Scholar
  12. Missel, J., Mortari, D.: Path optimization for Space Sweeper with Sling-Sat: a method of active space debris removal. Adv. Space Res. 52, 1339–1348 (2013) ADSCrossRefGoogle Scholar
  13. Molotov, I., Agapov, V., Titenko, V., et al.: International scientific optical network for space debris research. Adv. Space Res. 41, 1022–1028 (2008) ADSCrossRefGoogle Scholar
  14. Papushev, P., Karavaev, Yu., Mishina, M.: Investigations of the evolution of optical characteristics and dynamics of proper rotation of uncontrolled geostationary artificial satellites. Adv. Space Res. 43, 1416–1422 (2009) ADSCrossRefGoogle Scholar
  15. Porfilio, M., Piergentili, F., Graziani, F.: First optical space debris detection campaign in Italy. Adv. Space Res. 34, 921–926 (2004) ADSCrossRefGoogle Scholar
  16. Schildknecht, T.: Optical surveys for space debris. Astron. Astrophys. Rev. 14, 41–111 (2007) ADSCrossRefGoogle Scholar
  17. Schildknecht, T., Musci, R., Ploner, M., et al.: Optical observations of space debris in GEO and in highly-eccentric orbits. Adv. Space Res. 34, 901–911 (2004) ADSCrossRefGoogle Scholar
  18. Seitzer, P., Smith, R., Africano, J., et al.: MODEST observations of space debris at geosynchronous orbit. Adv. Space Res. 34, 1139–1142 (2004) ADSCrossRefGoogle Scholar
  19. Silha, J., Pittet, J.N., Hamara, M., et al.: Apparent rotation properties of space debris extracted from photometric measurements. Adv. Space Res. 61, 844–861 (2018) ADSCrossRefGoogle Scholar
  20. Stellingwerf, R.F.: Period determination using phase dispersion minimization. Astrophys. J. 224, 953–960 (1978) ADSCrossRefGoogle Scholar
  21. Stetson, P.B.: DAOPHOT—a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 99, 191–222 (1987) ADSCrossRefGoogle Scholar
  22. Sun, R.Y., Zhao, C.Y.: A new source extraction algorithm for optical space debris observation. Res. Astron. Astrophys. 13, 604 (2013) ADSCrossRefGoogle Scholar
  23. Sun, R.Y., Zhan, J.W., Zhao, C.Y., et al.: Algorithms and applications for detecting faint space debris in GEO. Acta Astronaut. 110, 9–17 (2015) ADSCrossRefGoogle Scholar
  24. Sun, R.Y., Zhao, C.Y., Lu, Y.: An improved astrometric calibration technique for space debris observation. Res. Astron. Astrophys. 16, 29 (2016) ADSCrossRefGoogle Scholar
  25. Wang, W.N., Jia, P., Cai, D.M.: Automated clustering method for point spread function classification. Mon. Not. R. Astron. Soc. 478, 5671–5682 (2018) ADSCrossRefGoogle Scholar
  26. Yanagisawa, T., Kurosaki, H.: Shape and motion estimate of LEO debris using light curves. Adv. Space Res. 50, 136–145 (2012) ADSCrossRefGoogle Scholar
  27. Zhang, Z.P., Yang, F.M., Zhang, H.F., et al.: The use of laser ranging to measure space debris. Res. Astron. Astrophys. 12, 212–218 (2012) ADSCrossRefGoogle Scholar
  28. Zhang, Y.P., Zhao, C.Y., Zhang, X.X., et al.: Statistics and analysis of LEO objects’ luminosity. Chin. Astron. Astrophys. 39, 100–117 (2015) ADSCrossRefGoogle Scholar
  29. Zhao, C.Y., Zhang, M.J., Yu, S.X., et al.: Variation ranges of motion parameters for space debris in the geosynchronous ring. Astrophys. Space Sci. 361, 196 (2016) ADSMathSciNetCrossRefGoogle Scholar
  30. Zhu, T.L.: On the lunar node resonance of the orbital plane evolution of the Earth’s satellite orbits. Adv. Space Res. 61, 2761–2776 (2018) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina
  2. 2.Key Laboratory of Space Object and Debris ObservationChinese Academy of SciencesNanjingChina

Personalised recommendations