Advertisement

Exoplanets apsidal precession and analysis on their eccentricities

  • A. J. S. CapistranoEmail author
  • P. T. Z. Seidel
  • V. Neves
Original Article
  • 50 Downloads

Abstract

In this paper, we analyze a set of 34 exoplanets with different eccentricities. Starting from the Weyl cylindric metric, we calculate the geodesic equations and propose a model with only one parameter that depends on eccentricity. We study each case and confront them to obtain a reliable control on the \(\beta _{0}\) parameter provided by the model obtaining in some cases a numerical refinement in the expected values as compared to the parameterized post-newtonian approximation. Conversely, we find that the model increases precision for apsidal precession of objects with eccentricities larger than 0.1 up to 0.8. In addition, we verify that the model is sensitive to the variation of the semimajor axis and orbital periods.

Keywords

Gravity Exoplanets 

Notes

Acknowledgements

Abraão J. S. Capistrano thanks Federal University of Latin-American Integration for the financial support from Edital PRPPG \(n^{o}\) 110 (17/09/2018) and Fundação Araucária/PR for the Grant CP15/2017-P&D. Paola T.Z. Seidel thanks the Coordination for the Improvement of Higher education Personnel Brazilian agency (CAPES) and the Fundação Araucária/PR for the scholarship grant Capes/FA (Chamada Pública 19/2015).

References

  1. Acedo, L.: Galaxies 2, 466 (2014) ADSCrossRefGoogle Scholar
  2. Adams, F.C., Laughlin, G.: Astrophys. J. 649, 1004 (2006a) ADSCrossRefGoogle Scholar
  3. Adams, F.C., Laughlin, G.: Int. J. Mod. Phys. D 15, 2133 (2006b) ADSCrossRefGoogle Scholar
  4. Adams, F.C., Laughlin, G.: Astrophys. J. 649, 992 (2006c) ADSCrossRefGoogle Scholar
  5. Alberti, T., Carbone, V., Lepreti, F., Vecchio, A.: Astrophys. J. 844, 1 (2017) CrossRefGoogle Scholar
  6. Bolmont, E., et al.: Mon. Not. R. Astron. Soc. 464, 3728 (2017) ADSCrossRefGoogle Scholar
  7. Bourrier, V., et al.: Astron. Astrophys. 599, L3 (2017) ADSCrossRefGoogle Scholar
  8. Bureau International des Poids, Le Systéme International d’Unités (SI), 8edn., , p. 37. BIPM, Sévres (2006) Google Scholar
  9. Butler, R., Wright, J., et al.: Astrophys. J. 646, 505 (2006) ADSCrossRefGoogle Scholar
  10. Campo, C., et al.: Astrophys. J. 727, 2 (2011) CrossRefGoogle Scholar
  11. Capistrano, A.J.S.: Galaxies 6, 48 (2018) ADSCrossRefGoogle Scholar
  12. Capistrano, A.J.S., Roque, W.L., Valada, R.S.: Mon. Not. R. Astron. Soc. 444, 1639 (2014) ADSCrossRefGoogle Scholar
  13. Capistrano, A.J.S., Penagos, J.A.M., Alárcon, M.S.: Mon. Not. R. Astron. Soc. 463, 1587 (2016) ADSCrossRefGoogle Scholar
  14. Debono, I., Smoot, G.F.: Universe 2, 23 (2016) ADSCrossRefGoogle Scholar
  15. Dong, C., Lingam, M., Ma, Y., Cohen, O.: Astrophys. J. Lett. 837, L26 (2017) ADSCrossRefGoogle Scholar
  16. Fienga, A., et al.: Celest. Mech. Dyn. Astron. 111, 363 (2011) ADSCrossRefGoogle Scholar
  17. Gillon, M., et al.: Nature 542, 456 (2017) ADSCrossRefGoogle Scholar
  18. González, G.A., Gutiérrez-Piñeres, A.C., Ospina, P.A.: Phys. Rev. D 78, 064058 (2008) ADSMathSciNetCrossRefGoogle Scholar
  19. Gutiérrez-Piñeres, A.C., González, G.A., Quevedo, H.: Phys. Rev. D 87, 044010 (2013) ADSCrossRefGoogle Scholar
  20. Haranas, I., Ragos, O., Mioc, V.: Astrophys. Space Sci. 332, 107 (2011) ADSCrossRefGoogle Scholar
  21. Harko, T., Kovácz, Z., Lobo, F.S.N.: Proc. R. Soc. A 467, 1390 (2011) ADSCrossRefGoogle Scholar
  22. Hebb, L., et al.: Astrophys. J. 693, 1920 (2009) ADSCrossRefGoogle Scholar
  23. Heyl, J.S., Gladman, B.J.: Mon. Not. R. Astron. Soc. 377, 1511 (2007) ADSCrossRefGoogle Scholar
  24. Infeld, L., Plebanski, J.: Motion and Relativity. Pergamon Press, Elmsford (1960) zbMATHGoogle Scholar
  25. Iorio, L.: New Astron. 11, 490 (2006) ADSCrossRefGoogle Scholar
  26. Iorio, L.: Astrophys. J. 137, 3615 (2009) ADSGoogle Scholar
  27. Iorio, L.: Open Astron. J. 3, 167 (2010) ADSCrossRefGoogle Scholar
  28. Iorio, L.: Mon. Not. R. Astron. Soc. 411, 167 (2011a) ADSCrossRefGoogle Scholar
  29. Iorio, L.: Astrophys. Space Sci. 331, 485 (2011b) ADSCrossRefGoogle Scholar
  30. Iorio, L.: Int. J. Mod. Phys. D 24, 1530015 (2015a) ADSMathSciNetCrossRefGoogle Scholar
  31. Iorio, L.: Universe 1, 38 (2015b) ADSCrossRefGoogle Scholar
  32. Iorio, L.: Mon. Not. R. Astron. Soc. 455, 207 (2016a) ADSCrossRefGoogle Scholar
  33. Iorio, L.: Mon. Not. R. Astron. Soc. 460, 2445 (2016b) ADSCrossRefGoogle Scholar
  34. Iorio, L.: Eur. Phys. J. C. 78, 549 (2018a) ADSCrossRefGoogle Scholar
  35. Iorio, L.: Mon. Not. R. Astron. Soc. 476, 1811 (2018b) ADSCrossRefGoogle Scholar
  36. Jórdan, A., Bakos, G.: Astrophys. J. 685, 543 (2008) ADSCrossRefGoogle Scholar
  37. Krull, C., et al.: Astrophys. J. 677, 657 (2008) ADSCrossRefGoogle Scholar
  38. Lin-Sen, L.: Astrophys. Space Sci. 341, 323 (2012) ADSCrossRefGoogle Scholar
  39. Macdonald, M., et al.: Astrophys. J. 152, 4 (2016) Google Scholar
  40. Mayor, M., Queloz, D.: Nature 378, 6555, 355 (1995) CrossRefGoogle Scholar
  41. Misner, C., et al.: Gravitation. Freeman, New York (1973) Google Scholar
  42. Moutou, C., et al.: Astron. Astrophys. 602, A87 (2017) CrossRefGoogle Scholar
  43. Pál, A., Kocsis, B.: Mon. Not. R. Astron. Soc. 389, 191 (2008) ADSCrossRefGoogle Scholar
  44. Pitjeva, E.V.: Ephemerides EPM2008: The Updated Models, Constants, Data. In: X. Lohrmann Kolloquium, Dresden, Germany (2010). Available online http://syrte.obs-pm.fr/jsr/journees2008/pdf Google Scholar
  45. Pitjeva, E.V., Pavlov, D.: Ephemerides EPM2017: IAA RAS. Available online: http://iaaras.ru/en/dept/ephemeris/epm/2017/#6
  46. Ragozzine, D., Wolf, A.S.: Astrophys. J. 698, 1778 (2009) ADSCrossRefGoogle Scholar
  47. Rosen, N.: Rev. Mod. Phys. 21, 503 (1949) ADSCrossRefGoogle Scholar
  48. Schettino, G., Serra, D., Tommei, G., Milani, A.: Celest. Mech. Dyn. Astron. 130, 72 (2018) ADSCrossRefGoogle Scholar
  49. Shan-Shan, Z., Xie, Y.: Res. Astron. Astrophys. 13, 1231 (2013) ADSCrossRefGoogle Scholar
  50. Ujevic, M., Letelier, P.S.: Phys. Rev. D 70, 084015 (2004) ADSMathSciNetCrossRefGoogle Scholar
  51. Ujevic, M., Letelier, P.S.: Gen. Relativ. Gravit. 39, 1345 (2007) ADSCrossRefGoogle Scholar
  52. Van Eylen, V., Albrecht, S.: Astrophys. J. 808, 126 (2015) ADSCrossRefGoogle Scholar
  53. Vida, K., Kövári, Zs., Pál, A., Oláh, K., Kriskovics, L.: Astrophys. J. 841, 2 (2017) CrossRefGoogle Scholar
  54. Vieira, R.S.S., Ramos-Caro, J., Saa, A.: Phys. Rev. D 94, 104016 (2016) ADSMathSciNetCrossRefGoogle Scholar
  55. Vishwakarma, R.G.: Universe, vol. 2, p. 16 (2016) Google Scholar
  56. Vogt, D., Letelier, P.S.: Mon. Not. R. Astron. Soc. 384, 834 (2008) ADSCrossRefGoogle Scholar
  57. Weyl, H.: Ann. Phys. 359, 117 (1917) CrossRefGoogle Scholar
  58. Wheatley, P.J., et al.: Mon. Not. R. Astron. Soc. 465, L74 (2017) ADSCrossRefGoogle Scholar
  59. Will, C.M.: Phys. Rev. Lett. 120, 191101 (2018) ADSCrossRefGoogle Scholar
  60. Wong, I., et al.: Astrophys. J. 811, 122 (2015) ADSCrossRefGoogle Scholar
  61. Wright, J., et al.: Astrophys. J. 657 533Y, 545 (2007) ADSGoogle Scholar
  62. Xie, Y., Xue-Mei, D.: Mon. Not. R. Astron. Soc. 438, 1832 (2014) ADSCrossRefGoogle Scholar
  63. Yamada, K., Asada, H.: Mon. Not. R. Astron. Soc. 423, 3540 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Casimiro Montenegro Filho Astronomy CenterItaipu Technological ParkFoz do IguaçuBrazil
  2. 2.Applied Physics Graduation ProgramFederal University of Latin-American IntegrationFoz do IguaçuBrazil
  3. 3.Instituto Federal do ParanáFoz do IguaçuBrazil

Personalised recommendations