Advertisement

Effects of dark matter in star formation

  • Kenath ArunEmail author
  • S. B. Gudennavar
  • A. Prasad
  • C. Sivaram
Original Article

Abstract

The standard model for the formation of structure assumes that there existed small fluctuations in the early universe that grew due to gravitational instability. The origins of these fluctuations are as yet unclear. In this work we propose the role of dark matter in providing the seed for star formation in the early universe. Very recent observations also support the role of dark matter in the formation of these first stars. With this we set observable constraints on luminosities, temperatures, and lifetimes of these early stars with an admixture of dark matter.

Keywords

Dark matter Structure formation Early universe Maximal luminosity 

Notes

References

  1. Ade, P.A.R., et al.: Planck 2015 results XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016) CrossRefGoogle Scholar
  2. Arun, K., Gudennavar, S.B., Sivaram, C.: Dark matter, dark energy, and alternate models: a review. Adv. Space Res. 60, 166 (2017) ADSCrossRefGoogle Scholar
  3. Arun, K., et al.: Alternate models to dark energy. Adv. Space Res. 61, 567 (2018) ADSCrossRefGoogle Scholar
  4. Barkana, R.: Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 555, 71 (2018) ADSCrossRefGoogle Scholar
  5. Barkana, R., Loeb, A.: In the beginning: the first sources of light and the reionization of the universe. Phys. Rep. 349, 125 (2001) ADSCrossRefGoogle Scholar
  6. Bowman, J.D., et al.: An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, 67 (2018) ADSCrossRefGoogle Scholar
  7. Firmani, C., Avila-Reese, V.: Physical processes behind the morphological Hubble sequence. Rev. Mex. Astron. Astrofís. 17, 107 (2003) Google Scholar
  8. Gelmini, G.B.: DAMA detection claim is still compatible with all other DM searches. J. Phys. Conf. Ser. 39, 166 (2006) ADSCrossRefGoogle Scholar
  9. Huang, X-J., Zhang, W-H., Zhou, Y-F.: 750 GeV diphoton excess and a dark matter messenger at the Galactic Center. Phys. Rev. D 93, 115006 (2016) ADSCrossRefGoogle Scholar
  10. Narain, G., Schaffner-Bielich, J., Mishustin, I.N.: Compact stars made of fermionic dark matter. Phys. Rev. D 74, 063003 (2006) ADSCrossRefGoogle Scholar
  11. Price, D.J., Bate, M.R.: Inefficient star formation: the combined effects of magnetic fields and radiative feedback. Mon. Not. R. Astron. Soc. 398, 33 (2009) ADSCrossRefGoogle Scholar
  12. Sivaram, C., Arun, K.: New class of dark matter objects and their detection. Open Astron. J. 4, 57 (2011) ADSCrossRefGoogle Scholar
  13. Sivaram, C., Arun, K., Kiren, O.V.: Forming supermassive black holes like J1342+0928 (invoking dark matter) in early universe. Astrophys. Space Sci. 363, 40 (2018) ADSCrossRefGoogle Scholar
  14. van den Bosch, F.C.: The origin of the density distribution of disc galaxies: a new problem for the standard model of disc formation. Mon. Not. R. Astron. Soc. 327, 1334 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Physics and ElectronicsChrist (Deemed to be University)BengaluruIndia
  2. 2.Department of PhysicsChrist Junior CollegeBengaluruIndia
  3. 3.Center for Space Plasma & Aeronomic ResearchThe University of Alabama in HuntsvilleHuntsvilleUSA
  4. 4.Indian Institute of AstrophysicsBengaluruIndia

Personalised recommendations