Advertisement

Ionospheric TEC variation over Manama, Bahrain and comparison with NeQuick-2 model

  • Sunil Kumar SharmaEmail author
Original Article
  • 40 Downloads

Abstract

This paper presents the ionospheric total electron content (TEC) variation over Manama city of Bahrain using GNSS observables from International GNSS Services (IGS) station at Manama, Bahrain during the period from January 2016 to December 2017. To understand the behavior of TEC variability, the diurnal, monthly and seasonal vertical TEC (VTEC) variations are studied and subsequently compared with NeQuick-2 model estimations. Diurnal VTEC variation reveals a diurnal peak level of about 14 TECU around 09.00 UT and declines thereafter to reach a level of about 5 TECU around 20.00 UT. However, the comparison study confirms the NeQuick-2 model overestimating the GNSS-VTEC irrespective of time of observation during the day. Monthly behavior of VTEC variation reflects that the NeQuick model is well estimated with GNSS-VTEC during November 2016 and January, February and October months in 2017. The magnitude of variations depicts about 30 to 35 TECU (the highest values) during September 2017 and three continuous months February to April in 2016, while it shows about 10 TECU (the lowest value) during January and December months of 2017, November and December months of 2016. Seasonal VTEC variation shows the underestimation of NeQuick-2 model during the June solstice for the years 2016 and 2017, about 10 TECU. It is notable that NeQuick model shows almost good agreement during the March equinox and December solstice in spite of departure in magnitude difference.

Keywords

Manama IGS GNSS NeQuick VTEC TECU 

Notes

Acknowledgements

The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No. 1440-28.

References

  1. Adeniyi, J.O., Bilitza, D., Radicella, S.M., Willoughby, A.A.: Equatorial F2-peak parameters in the IRI model. Adv. Space Res. 31(3), 507–512 (2003).  https://doi.org/10.1016/S0273-1177(03)00039-5 ADSCrossRefGoogle Scholar
  2. Ansari, K., Park, K.D.: Multi constellation GNSS precise point positioning and prediction of propagation errors using singular spectrum analysis. Astrophys. Space Sci. 363, 258 (2018).  https://doi.org/10.1007/s10509-018-3479-7 ADSCrossRefGoogle Scholar
  3. Ansari, K., Althuwaynee, O.F., Corumluoglu, O.: Monitoring and prediction of precipitable water vapor using GPS data in Turkey. J. Appl. Geod. 10(4), 233–245 (2016).  https://doi.org/10.1515/jag-2016-0037 ADSCrossRefGoogle Scholar
  4. Ansari, K., Panda, S.K., Althuwaynee, O.F., Corumluoglu, O.: Ionospheric TEC from the Turkish Permanent GNSS Network (TPGN) and comparison with ARMA and IRI models. Astrophys. Space Sci. 362, 178 (2017a).  https://doi.org/10.1007/s10509-017-3159-z ADSCrossRefGoogle Scholar
  5. Ansari, K., Corumluoglu, O., Panda, S.K.: Analysis of ionospheric TEC from GNSS observables over the Turkish region and predictability of IRI and SPIM models. Astrophys. Space Sci. 362, 65 (2017b).  https://doi.org/10.1007/s10509-017-3043-x ADSCrossRefGoogle Scholar
  6. Ansari, K., Panda, S.K., Corumluoglu, O.: Mathematical modelling of ionospheric TEC from Turkish permanent GNSS Network (TPGN) observables during 2009–2017 and predictability of NeQuick and Kriging models. Astrophys. Space Sci. 363(3), 42 (2018).  https://doi.org/10.1007/s10509-018-3261-x ADSCrossRefGoogle Scholar
  7. Bidaine, B., Warnant, R.: Ionospheric modeling for Galileo single frequency users: illustration of the combination of the NeQuick model and GNSS data ingestion. Adv. Space Res. 47(2), 312–322 (2011).  https://doi.org/10.1016/j.asr.2010.09.001 ADSCrossRefGoogle Scholar
  8. Di Giovanni, G., Radicella, S.M.: An analytical model of the electron density profile in the ionosphere. Adv. Space Res. 10(11), 27–30 (1990).  https://doi.org/10.1016/0273-1177(90)90301-F ADSCrossRefGoogle Scholar
  9. Farah, A.M.A.: Comparison of GNSS/Galileo single frequency ionospheric model with vertical TEC maps. Artif. Satell., Planet. Geod. 43(2), 75–90 (2008).  https://doi.org/10.2478/v10018-009-0008-5 ADSCrossRefGoogle Scholar
  10. Mukul, M., Jade, S., Ansari, K., Matin, A.: Seismotectonic implications of strike-slip earthquakes in the Darjiling-Sikkim Himalaya. Curr. Sci. 106(2), 198–210 (2014). http://www.currentscience.ac.in/Volumes/106/02/0198.pdf Google Scholar
  11. Nava, B., Coïsson, P., Radicella, S.M.: A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol.-Terr. Phys. 70, 1856–1862 (2008).  https://doi.org/10.1016/j.jastp.2008.01.015 ADSCrossRefGoogle Scholar
  12. Oladipo, O.A., Schüler, T.: GNSS single frequency ionospheric range delay corrections: NeQuick data ingestion technique. Adv. Space Res. 50(9), 1204–1212 (2012) ADSCrossRefGoogle Scholar
  13. Otsuka, Y., Ogawa, T., Saito, A., Tsugawa, T., Fukao, S., Miyazaki, S.: A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space 54(1), 63–70 (2002). http://stdb2.stelab.nagoya-u.ac.jp/member/otsuka/study/absTEC/AbsTEC.pdf ADSCrossRefGoogle Scholar
  14. Panda, S.K., Gedam, S.S., Rajaram, G.: Study of ionospheric TEC from GPS observations and comparisons with IRI and SPIM model predictions in the low latitude anomaly Indian sub continental region. Adv. Space Res. 55(8), 1948–1964 (2015).  https://doi.org/10.1016/j.asr.2014.09.004 ADSCrossRefGoogle Scholar
  15. Sardon, E., Zarraoa, N.: Estimation of total electron content using GNSS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci. 32(5), 1899–1910 (1997).  https://doi.org/10.1029/97RS01457 ADSCrossRefGoogle Scholar
  16. Schaer, S.: Mapping and predicting the Earth’s ionosphere using the Global Positioning System. Ph.D. thesis, Astronomical Institute, University of Berne, Berne, Switzerland (1999) Google Scholar
  17. Seemala, G.K., Valladares, C.E.: Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci. 46(5), RS5019 (2011).  https://doi.org/10.1029/2011RS004722 ADSCrossRefGoogle Scholar
  18. Sharma, S.K., Ansari, K., Panda, S.K.: Analysis of ionospheric TEC variation over Manama, Bahrain and comparison with IRI-2012 and IRI-2016 models. Arab. J. Sci. Eng. 43(7), 3823–3830 (2018).  https://doi.org/10.1007/s13369-018-3128-z CrossRefGoogle Scholar
  19. Wang, S.G., Shi, J.K., Wang, X., Wang, G.J.: Validation of B2bot in the NeQuick model during high solar activity at Hainan station. Adv. Space Res. 46(9), 1094–1101 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Computer and Information SciencesMajmaah UniversityMajmaahSaudi Arabia

Personalised recommendations