The analysis of effective galaxies number count for Chinese Space Station Optical Survey (CSS-OS) by image simulation

  • Xin ZhangEmail author
  • Li Cao
  • Xianmin Meng
Original Article


The Chinese Space Station Optical Survey (CSS-OS) is a mission to explore the vast universe. This mission will equip a 2-meter space telescope to perform a multi-band NUV-optical large area survey (over 40\(\%\) of the sky) and deep survey (\({\sim} 1\%\) of the sky) for the cosmological and astronomical goals. Galaxy detection is one of the most important methods to achieve scientific goals. In this paper, we evaluate the galaxy number density for CSS-OS in i band (depth, i ∼ 26 for large area survey and ∼27 for the deep survey, point source, 5\(\sigma \)) by the method of image simulation. We also compare galaxies detected by CSS-OS with that of LSST (i ∼ 27, point source, 5\(\sigma \)). In our simulation, the HUDF galaxy catalogs are used to create mock images due to long enough integration time which meets the completeness requirements of the galaxy analysis for CSS-OS and LSST. The galaxy surface profile and spectrum are produced by the morphological information, photometric redshift and SEDs from the catalogs. The instrumental features and the environmental condition are also considered to produce the mock galaxy images. The galaxies of CSS-OS and LSST are both extracted by SExtractor from the mock i band image and matched with the original catalog. Through the analysis of the extracted galaxies, we find that the effective galaxy number count is \({\sim} 13~\mbox{arcmin}^{-2}\), \({\sim} 40~\mbox{arcmin}^{-2}\) and \({\sim }42~\mbox{arcmin} ^{-2}\) for CSS-OS large area survey, CSS-OS deep survey and LSST, respectively. Moreover, CSS-OS shows the advantage in small galaxy detection with high spatial resolution, especially for the deep survey: about 20\(\%\) of the galaxies detected by CSS-OS deep survey are not detected by LSST, and they have a small effective radius of \(r_{e} < 0.3^{\prime\prime}\).


Methods: data analysis Techniques: image processing Catalogues Surveys 



XZ acknowledges the support of National Natural Science Foundation of China (Grant No. U1731127) and the Opening Project of Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences. LC acknowledges the support by the Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of Sciences (No. LSU-KFJJ-2018-09). We thank Prof. Hu Zhan for the discussion about methods of image simulation and data analysis, Youhua Xu and Qiao Wang for the discussion about the algorithms, and Yuan Liu and Hongyuan Cai for revising the manuscript.


  1. Beckwith, S.V.W., Stiavelli, M., Koekemoer, A.M., Caldwell, J.A.R., et al.: Astron. J. 132, 1729 (2006). ADSCrossRefGoogle Scholar
  2. Benítez, N.: Astrophys. J. 536, 571 (2000). ADSCrossRefGoogle Scholar
  3. Benítez, N., Ford, H., Bouwens, R., Menanteau, F., et al.: Astrophys. J. Suppl. Ser. 150, 1 (2004). ADSCrossRefGoogle Scholar
  4. Bertin, E.: Mem. Soc. Astron. Ital. 80, 422 (2009) ADSGoogle Scholar
  5. Bertin, E., Arnouts, S.: Astron. Astrophys. Suppl. Ser. 117, 393 (1996). ADSCrossRefGoogle Scholar
  6. Bianchi, L.: Astrophys. Space Sci. 354, 103 (2014). arxiv:1404.4882. ADSCrossRefGoogle Scholar
  7. Bruzual, G., Charlot, S.: Mon. Not. R. Astron. Soc. 344, 1000 (2003). ADSCrossRefGoogle Scholar
  8. Cao, Y., Gong, Y., Meng, X.-M., Xu, C.K., Chen, X., Guo, Q., Li, R., Liu, D., Xue, Y., Cao, L., Fu, X., Zhang, X., Wang, S., Zhan, H.: Mon. Not. R. Astron. Soc. 480, 2178 (2018). ADSCrossRefGoogle Scholar
  9. Castelli, F., Kurucz, R.L.: Astron. Astrophys. 281, 817 (1994) ADSGoogle Scholar
  10. Coe, D., Benítez, N., Sánchez, S.F., Jee, M., Bouwens, R., Ford, H.: Astron. J. 132, 926 (2006). ADSCrossRefGoogle Scholar
  11. de Vaucouleurs, G.: Ann. Astrophys. 11, 247 (1948) ADSGoogle Scholar
  12. Dobke, B.M., Johnston, D.E., Massey, R., High, F.W., Ferry, M., Rhodes, J., Vanderveld, R.A.: Publ. Astron. Soc. Pac. 122, 947 (2010). arxiv:1008.4112. ADSCrossRefGoogle Scholar
  13. Geller, M.J., Diaferio, A., Kurtz, M.J., Dell’Antonio, I.P., Fabricant, D.G.: Astron. J. 143, 102 (2012). arxiv:1107.2930. ADSCrossRefGoogle Scholar
  14. Green, J., Schechter, P., Baltay, C., Bean, R., et al.: ArXiv e-prints, 1208 (2012). arxiv:1208.4012
  15. Ilbert, O., Capak, P., Salvato, M., Aussel, H., et al.: Astrophys. J. 690, 1236 (2009). ADSCrossRefGoogle Scholar
  16. Janesick, J.R.: Photon Transfer Dn \({\rightarrow } { \lambda }\), (2007) Google Scholar
  17. Koda, J., Yagi, M., Yamanoi, H., Komiyama, Y.: Astrophys. J. 807, 2 (2015). ADSCrossRefGoogle Scholar
  18. Koekemoer, A.M., et al.: HST Dither Handbook, (2002) Google Scholar
  19. Laigle, C., McCracken, H.J., Ilbert, O., Hsieh, B.C., et al.: Astrophys. J. Suppl. Ser. 224, 24 (2016). ADSCrossRefGoogle Scholar
  20. Laureijs, R., Amiaux, J., Arduini, S., Auguères, J.-L., et al.: ArXiv e-prints, 1110 (2011). arxiv:1110.3193
  21. LSST Science Collaboration, Abell, P.A., Allison, J., Anderson, S.F., et al.: ArXiv e-prints, 0912 (2009). arxiv:0912.0201
  22. Moffat, A.F.J.: Astron. Astrophys. 3, 455 (1969) ADSGoogle Scholar
  23. Oke, J.B., Gunn, J.E.: Astrophys. J. 266, 713 (1983). ADSCrossRefGoogle Scholar
  24. Peng, C.Y., Ho, L.C., Impey, C.D., Rix, H.-W.: Astron. J. 124, 266 (2002). ADSCrossRefGoogle Scholar
  25. Peterson, J.R., Jernigan, J.G., Kahn, S.M., Rasmussen, A.P., et al.: Astrophys. J. Suppl. Ser. 218, 14 (2015). ADSCrossRefGoogle Scholar
  26. Refregier, A.: Mon. Not. R. Astron. Soc. 338, 35 (2003). ADSCrossRefGoogle Scholar
  27. Refregier, A., Bacon, D.: Mon. Not. R. Astron. Soc. 338, 48 (2003). ADSCrossRefGoogle Scholar
  28. Rowe, B.T.P., Jarvis, M., Mandelbaum, R., Bernstein, G.M., Bosch, J., Simet, M., Meyers, J.E., Kacprzak, T., Nakajima, R., Zuntz, J., Miyatake, H., Dietrich, J.P., Armstrong, R., Melchior, P., Gill, M.S.S.: Astron. Comput. 10, 121 (2015). ADSCrossRefGoogle Scholar
  29. Sérsic, J.L.: Bol. Asoc. Argent. Astron. 6, 41 (1963) ADSGoogle Scholar
  30. Spergel, D., Gehrels, N., Breckinridge, J., Donahue, M., Dressler, A., Gaudi, B.S., Greene, T., Guyon, O., Hirata, C., Kalirai, J., Kasdin, N.J., Moos, W., Perlmutter, S., Postman, M., Rauscher, B., Rhodes, J., Wang, Y., Weinberg, D., Centrella, J., Traub, W., Baltay, C., Colbert, J., Bennett, D., Kiessling, A., Macintosh, B., Merten, J., Mortonson, M., Penny, M., Rozo, E., Savransky, D., Stapelfeldt, K., Zu, Y., Baker, C., Cheng, E., Content, D., Dooley, J., Foote, M., Goullioud, R., Grady, K., Jackson, C., Kruk, J., Levine, M., Melton, M., Peddie, C., Ruffa, J., Shaklan, S.: ArXiv e-prints, 1305 (2013). arxiv:1305.5422
  31. Trujillo, I., Aguerri, J.A.L., Cepa, J., Gutiérrez, C.M.: Mon. Not. R. Astron. Soc. 328, 977 (2001). ADSCrossRefGoogle Scholar
  32. Ubeda, L., et al.: Advanced Camera for Surveys Instrument Handbook for Cycle 21 V. 12.0, (2012) Google Scholar
  33. van Dokkum, P.G., Abraham, R., Merritt, A., Zhang, J., Geha, M., Conroy, C.: Astrophys. J. 798, 45 (2015). arxiv:1410.8141. CrossRefGoogle Scholar
  34. York, D.G., Adelman, J., Anderson, J.E., Jr., Anderson, S.F., et al.: Astron. J. 120, 1579 (2000). ADSCrossRefGoogle Scholar
  35. Zhan, H.: Sci. Sin. Phys., Mech. Astron. 41, 1441 (2011). CrossRefGoogle Scholar
  36. Zhan, H.: In: 42nd COSPAR Scientific Assembly. Held 14–22 July 2018, vol. 42, p. 1 (2018) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Chinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Space Astronomy and Technology, National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina

Personalised recommendations