Advertisement

Astrophysics and Space Science

, 363:249 | Cite as

Whistler mode waves for ring distribution with A.C. electric field in inner magnetosphere of Saturn

  • Jyoti Kumari
  • R. S. Pandey
Original Article
  • 40 Downloads

Abstract

Whistler mode waves can propagate upstream without collision impact. They are generated in these areas of vibration. They are known to play a crucial role in thermodynamics and electron acceleration. Sometimes, in some cases, they are seen as waves that strike the wavefront. Mercury, Earth, Venus and Saturn are the planets where whistlers have been recorded in the upstream regions. They are right handed waves and can be left-hand polarized in the frame of spacecraft due to the strong negative Doppler shift. The weaker Doppler shift owes to the large angle between magnetic field vectors at 10 AU (Astronomical unit) and the solar wind velocity. These waves propagate with an angle between 10 to 60 degrees to background magnetic field. In the present paper, we took an advantage of Cassini present in the Saturnian magnetosphere to explore the whistler mode wave’s importance. A dispersion relation for obliquely as well as for whistler waves propagating perpendicular to the magnetic field, has been applied to Saturnian magnetosphere. Using the observations made by Voyager and Cassini, growth rate has been determined for non-relativistic plasma. Whistler waves are excited by temperature anisotropy, where the vertical temperature is higher than the parallel temperature. The effect of electron density, temperature anisotropy, energy density with some other parameters on the growth of whistler mode emission is studied. The result is found to be in good agreement with observations. Whistler mode wave interaction with particles basically emphasizes on the increase (decrease) in the energy of resonant particles and this variation is related to the transfer of energy to (from) other resonant particle group where the wave is the mediator of the energization process. Due to the non-monotonic nature of the ring distribution, at vertical velocities, the magnification produced by this instability is larger than the typical bi-Maxwellian anisotropy distribution because the wave can maintain resonance over a longer portion of its orbit.

Keywords

Whistler mode waves Magnetosphere of Saturn Ring distribution function 

Notes

Acknowledgements

The authors are grateful to the Chairman, Indian Space Research Organization (ISRO), Director and members of PLANEX program, ISRO, for the financial support. We are thankful to Dr. Ashok K. Chauhan (Founder President, Amity University), Dr. Atul Chauhan (President, Amity University) and Dr. Balvinder Shukla (Vice Chancellor, Amity University) for their immense encouragement. We also express our gratitude to the reviewers for their expert comments for the manuscript.

References

  1. Acuna, M.H., Ness, N.F.: The magnetic field of Saturn: Pioneer 11 observations. Science 207(4429), 444 (1980) ADSCrossRefGoogle Scholar
  2. Barkhausen, H.: Zwei mit Hilfe der neuen Verstarker entdeckte Erscheinungen. Phys. Z. 20, 401–403 (1919) Google Scholar
  3. Bell, T.F., Ngo, H.D.: Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities. J. Geophys. Res. 95, 149–172 (1990) ADSCrossRefGoogle Scholar
  4. Brinca, A.L., Tsurutani, B.T.: On the excitation of cyclotron harmonic waves by newborn heavy ions. J. Geophys. Res. 94(A5), 5467 (1989a) ADSCrossRefGoogle Scholar
  5. Brinca, A.L., Tsurutani, B.T.: The oblique behavior of low-frequency electromagnetic waves excited by newborn cometary ions. J. Geophys. Res. 94(A1), 3 (1989b) ADSCrossRefGoogle Scholar
  6. Carpenter, D.L.: Remote sensing of magnetospheric plasma by means of whistler mode signals. Rev. Geophys. 26, 535–549 (1988) ADSCrossRefGoogle Scholar
  7. Chernov, G.P.: Whistlers in the solar corona and their relevance to fine structures of type IV radio emission. Sol. Phys. 130, 75–82 (1990) ADSCrossRefGoogle Scholar
  8. Coroniti, F.V., Kurth, W.S., Scarf, F.L., Krimigis, S.M., Kennel, C.F., Gurnett, D.A.: Whistler mode emissions in the Uranian radiation belts. J. Geophys. Res. 92, 15234–15248 (1987) ADSCrossRefGoogle Scholar
  9. Cowley, S.W.H., Wright, D.M., Bunce, E.J., Carter, A.C., Dougherty, M.K., Giampieri, G., Nichols, J.D., Robinson, T.R.: Cassini observations of planetary-period magnetic field oscillations in Saturn’s magnetosphere: Doppler shifts and phase motion. Geophys. Res. Lett. 33(7), L07104 (2006) ADSCrossRefGoogle Scholar
  10. Davidson, R.C.: Kinetic waves and instabilities in a uniform plasma. In: Handbook of Plasma (1983) Google Scholar
  11. Davis, L. Jr., Smith, E.J.: A model of Saturn’s magnetic field based on all available data. J. Geophys. Res. 95(A9), 15257 (1990) ADSCrossRefGoogle Scholar
  12. Eckersley, T.L.: Musical atmospherics. Nature 135, 104–105 (1935) ADSCrossRefGoogle Scholar
  13. Frank, L.A., Burek, B.G., Ackerson, K.L., Wolfe, J.H., Mihalov, J.D.: Plasmas in Saturn’s magnetosphere. J. Geophys. Res. 85(A11), 5695 (1980a) ADSCrossRefGoogle Scholar
  14. Frank, L.A., Burek, B.H., Ackerson, K.L., Wolfe, J.H., Mihafov, J.D.: Plasmas in Saturn’s magnetosphere. J. Geophys. Res. 85, 5695 (1980b) ADSCrossRefGoogle Scholar
  15. Gabrel, V., Echim, M.: Transport and entry of plasma clouds/jets across transverse magnetic discontinuities: Three-dimensional electromagnetic particle-in-cell simulations. J. Geophys. Res. 121 (2016).  https://doi.org/10.1002/2015JA021973
  16. Gary, S.P., Madland, C.D.: Electromagnetic ion instabilities in a cometary environment. J. Geophys. Res. 93, 235 (1988) ADSCrossRefGoogle Scholar
  17. Gary, S.P., Scime, E.E., Phillips, J.L., Feldman, W.C.: The whistler heat flux instability: threshold conditions in the solar wind. J. Geophys. Res. 99, 23391–23399 (1994) ADSCrossRefGoogle Scholar
  18. Goldstein, M.L., Wong, N.K.: A theory for low-frequency waves observed at comet Ciiacobini-Zinner. J. Geophys. Res. 92, 469 (1987) ADSCrossRefGoogle Scholar
  19. Gurnett, D.A., Kurth, W.S., Kirchner, D.L., Hospodarsky, G.B., Averkamp, T.F., Zarka, P., Lecacheux, A., Manning, R., Roux, A., Canu, P., Cornilleau-Wehrlin, N., Galopeau, P., Meyer, A., Bostrom, R., Gustafsson, G., Wahlund, J.-E., Aahlen, L., Rucker, H.O., Ladreiter, H.P., Macher, W., Woolliscroft, L.J.C., Alleyne, H., Kaiser, M.L., Desch, M.D., Farrell, W.M., Harvey, C.C., Louarn, P., Kellogg, P.J., Goetz, K., Pedersen, A.: The Cassini radio science investigation. Space Sci. Rev. 114, 395–463 (2004) ADSCrossRefGoogle Scholar
  20. Gurnett, D.A., et al.: Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307, 1255 (2005) ADSCrossRefGoogle Scholar
  21. Hayakawa, M., Lefeuvre, F., Rauch, J.L.: On the system of Aureol-3 satellite direction finding for ionospheric and magnetospheric ELF waves. Trans. Inst. Electr. Inform. Comm. Eng. E 73, 942–951 (1990) Google Scholar
  22. Helliwell, R.A.: Whistlers and Related Ionospheric Phenomena. Stanford University Press, Stanford (1965) Google Scholar
  23. Inhester, B.A.: A drift-kinetic treatment of the parametric decay of large-amplitude Alfven waves. J. Geophys. Res. 95(A7), 10525 (1990) ADSCrossRefGoogle Scholar
  24. Kaur, R., Pandey, R.S.: Study of whistler mode waves for ring distribution function in Saturn’s magnetosphere. Adv. Space Res. 59, 2434–2441 (2017) ADSCrossRefGoogle Scholar
  25. Kennel, C.F., Petschek, H.E.: Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1–28 (1966) ADSCrossRefGoogle Scholar
  26. Koons, H.C.: Whistlers and whistler-stimulated emissions in the outer magnetosphere. J. Geophys. Res. 90, 8547–8551 (1985) ADSCrossRefGoogle Scholar
  27. Krimigis, S.M., et al.: Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan. Space Sci. Rev. 114, 233–329 (2004) ADSCrossRefGoogle Scholar
  28. Kumar, S., Singh, S.K., Gwal, A.K.: Effect of upflowing field aligned electron beams on the electron cyclotron waves in the auroral magnetosphere. Pramana J. Phys. 68(4), 611 (2007) ADSCrossRefGoogle Scholar
  29. Lee, Y.C., Kaw, P.K.: Parametric instabilities of ion cyclotron waves in a plasma. Phys. Fluids 15, 911 (1972) ADSCrossRefGoogle Scholar
  30. Leisner, J.S., Russell, C.T., Dougherty, M.K., Blanco-Cano, X., Strangeway, R.J., Bertucci, C.: Ion cyclotron waves in Saturn’s E ring: initial Cassini observations. Geophys. Res. Lett. 33, L11101 (2006) ADSCrossRefGoogle Scholar
  31. Lyons, L.R., Thorne, R.M., Kennel, C.F.: Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77, 3455–3474 (1972) ADSCrossRefGoogle Scholar
  32. Menietti, J.D., Santolik, O., Rymer, A.M., Hospodarsky, G.B., Persoon, A.M., Gurnett, D.A., Coates, A.J., Young, D.T.: Analysis of plasma waves observed within local plasma injections seen in Saturn’s magnetosphere. J. Geophys. Res. 113, A05213 (2008a) ADSCrossRefGoogle Scholar
  33. Menietti, J.D., Santolik, O., Rymer, A.M., Hospodarsky, G.B., Gurnett, D.A., Coates, A.J.: Analysis of plasma waves observed in the inner Saturn magnetosphere. Ann. Geophys. 26, 2631–2644 (2008b) ADSCrossRefGoogle Scholar
  34. Menietti, J.D., Ye, S.Y., Hoon, P.H., Santolik, O., Rymer, A.M., Gurnett, D.A., Coates, A.J.: Analysis of narrow band emission observed in the Saturn magnetosphere. J. Geophys. Res. 114, A06206 (2009) ADSCrossRefGoogle Scholar
  35. Menietti, J.D., Shprits, Y.Y., Horne, R.B., Woodfield, E.E., Hospodarsky, G.B., Gurnett, D.A.: Chorus, ECH and Z mode emissions observed at Jupiter and Saturn and possible electron acceleration. J. Geophys. Res. 117, A12214 (2012) ADSCrossRefGoogle Scholar
  36. Menietti, J.D., Schippers, P., Katoh, Y., Leisner, J.S., Hospodarsky, G.B., Gurnett, D.A., Santolik, O.: Saturn chorus intensity variations. J. Geophys. Res. 118, 5592–5602 (2013) CrossRefGoogle Scholar
  37. Misra, K.D., Pandey, R.S.: Generation of whistler emissions by injection of hot electrons in the presence of perpendicular AC electric field. J. Geophys. Res. 100, 9405 (1995) CrossRefGoogle Scholar
  38. Nagano, I., Wu, X.-Y., Yagitani, S., Miyamura, K.: Unusual whistler with very large dispersion near the magnetopause: geotail observation and ray-tracing modeling. J. Geophys. Res. 103, 11827–11840 (1998) ADSCrossRefGoogle Scholar
  39. Orlowski, D.S., Russell, C.T.: Comparison of properties of upstream whistlers at different planets. Adv. Space Res. 16, 137–141 (1995) ADSCrossRefGoogle Scholar
  40. Pandey, R.S., Kaur, R.: Theoretical study of electromagnetic electron cyclotron waves in the presence of AC field in Uranian magnetosphere. New Astron. 40, 41–48 (2015a) ADSCrossRefGoogle Scholar
  41. Pandey, R.S., Kaur, R.: Oblique electromagnetic electron cyclotron waves for kappa distribution with A.C field in planetary magnetosphere. Adv. Space Res. 56, 714–724 (2015b) ADSCrossRefGoogle Scholar
  42. Pandey, R.S., Kaur, R.: Analytical study of whistler mode waves in presence of parallel D.C electric field for relativistic plasma in the magnetosphere of Uranus. Adv. Space Res. 58, 1417–1424 (2016) ADSCrossRefGoogle Scholar
  43. Pandey, R.S., Misra, K.D.: Excitation of oblique whistler waves in magnetosphere and in interplanetary space at 1 A.U. Earth Planets Space 54, 159–165 (2002) ADSCrossRefGoogle Scholar
  44. Potter, R.K.: Analysis of audio-frequency atmospherics. Proc. Inst. Radio Eng. 39, 1067 (1951) Google Scholar
  45. Rymer, A.M., et al.: Electron sources in Saturn’s magnetosphere. J. Geophys. Res. 112, A02201 (2007) ADSCrossRefGoogle Scholar
  46. Sakamoto, K., Kasahara, Y., Kimura, I.: K-vector determination of whistler mode signals by using amplitude data obtained by a spacecraft borne instrument. IEEE Trans. Geosci. Remote Sens. 33, 528–534 (1995) ADSCrossRefGoogle Scholar
  47. Sazhin, S.S., Hayakawa, M., Bullough, K.: Whistler diagnostics of magnetospheric parameters: a review. Ann. Geophys. 10, 293–308 (1992) ADSGoogle Scholar
  48. Schippers, P., et al.: Multi-instrument analysis of electron populations in Saturn’s magnetosphere. J. Geophys. Res. 113, A07208 (2008) ADSCrossRefGoogle Scholar
  49. Sharma, O.P., Patel, V.L.: Low-frequency electromagnetic waves driven by gyrotropic gyrating beams. J. Geophys. Res. 91, 1529 (1986) ADSCrossRefGoogle Scholar
  50. Singh, R.P., Singh, A.K., Singh, D.K.: Plasmaspheric parameters as determined from whistler spectrograms: a review. J. Atmos. Sol.-Terr. Phys. 60, 495–508 (1998) ADSCrossRefGoogle Scholar
  51. Sittler, E.C. Jr., Ogilvie, K.W., Scudder, J.D.: Survey of low energy plasma electrons in Saturn’s magnetosphere: Voyagers 1 and 2. J. Geophys. Res. 88, 8847–8870 (1983) ADSCrossRefGoogle Scholar
  52. Smith, E.J., Davis, L. Jr., Jones, D.E., Coleman, P.J. Jr., Colburn, D.S., Dyal, P., Sonett, C.P.: Saturn’s magnetic field and magnetosphere. Science 207(4429), 407–410 (1980) ADSCrossRefGoogle Scholar
  53. Sonwalkar, V.S., Inan, U.S., Bell, T.F., Helliwell, R.A., Chmyrev, V.M., Sobolev, Y.P., Ovcharenko, O.Y., Selegej, V.: Simultaneous observations of VLF ground transmitter signals on the DE 1 and COSMOS 1809 satellites: detection of a magnetospheric caustic and a duct. J. Geophys. Res. 99, 17511–17522 (1994) ADSCrossRefGoogle Scholar
  54. Stenzel, R.L.: Whistler waves in space and laboratory plasmas. J. Geophys. Res. 14, 14379–14395 (1999) ADSCrossRefGoogle Scholar
  55. Storey, L.R.O.: An investigation of whistling atmospherics. Philos. Trans. R. Soc. Lond. Ser. A 246, 113–141 (1953) ADSCrossRefGoogle Scholar
  56. Strangeways, H.J.: Whistler leakage from narrow ducts. J. Atmos. Terr. Phys. JS, 455–462 (1986) ADSCrossRefGoogle Scholar
  57. Thorne, R.M., Summers, D.: Kinetic instability of a gyrating ring distribution with application to satellite pickup in planetary magnetospheres. Planet. Space Sci. 37(5), 535–544 (1989) ADSCrossRefGoogle Scholar
  58. Thorne, R.M., Tsurntani, B.T.: Resonant interaction between cometary ions and low frequency electromagnetic waves. Planet. Space Sci. 35, 1501 (1987) ADSCrossRefGoogle Scholar
  59. Tsurutani, B.T., Lakhina, G.S., Neubauer, F.M., Glassmeier, K.-H.: A new look at the nature of comet Halley’s LF electromagnetic waves: Giotto observations. Geophys. Res. Lett. 2, 3129–3132 (1997) ADSCrossRefGoogle Scholar
  60. Umeda, T., Ashour-Abdalla, M., Schriver, D., Richard, R.L., Coroniti, F.V.: Particle-in-cell simulation of Maxwellian ring velocity distribution. J. Geophys. Res. 112, A04212 (2007) ADSGoogle Scholar
  61. Vandas, M., Hellinger, P.: Linear dispersion properties of ring velocity distribution functions. Phys. Plasmas 22, 062107 (2015) ADSCrossRefGoogle Scholar
  62. Wong, H.K., Goldstein, M.L.: Proton beam generation of whistler waves in the Earth’s foreshock. J. Geophys. Res. 92, 12419–12424 (1987) ADSCrossRefGoogle Scholar
  63. Wu, C.S., Krauss-Varban, D., Huo, T.S.: A mirror instability associated with newly created ions in a moving plasma. J. Geophys. Res. 93, 11527 (1988) ADSCrossRefGoogle Scholar
  64. Wu, C.S., Yoon, P.H., Freund, H.P.: A theory of electron cyclotron waves generated along auroral field lines observed by ground facilities. Geophys. Res. Lett. 16(12), 1461 (1989) ADSCrossRefGoogle Scholar
  65. Young, D.T., Berthelier, J.J., Blanc, M., et al.: Composition and dynamics of plasma in Saturn’s magnetosphere. Science 307, 1262–1265 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Physics, Amity Institute of Applied SciencesAmity UniversityNoidaIndia

Personalised recommendations