Advertisement

Astrophysics and Space Science

, 363:244 | Cite as

Comets, Enceladus and panspermia

  • N. C. Wickramasinghe
  • Dayal T. Wickramasinghe
  • Edward J. Steele
Review

Abstract

A growing body of evidence suggests the operation of life and life processes in comets as well in larger icy bodies in the solar system including Enceladus. Attempts to interpret such data without invoking active biology are beginning to look weak and flawed. The emerging new paradigm is that life is a cosmic phenomenon as proposed by Hoyle and Wickramasinghe (Lifecloud: the Origin of Life in the Galaxy, 1978) and first supported by astronomical spectroscopy (Wickramasinghe and Allen, Nature 287:518, 1980; Allen and Wickramasinghe, Nature 294:239, 1981; Wickramasinghe and Allen, Nature 323:44, 1986). Comets are the transporters and amplifiers of microbial life throughout the Universe and are also, according to this point of view, the carriers of viruses that contribute to the continued evolution of life. Comets brought life to Earth 4.2 billion years ago and they continue to do so. Space extrapolations of comets, Enceladus and possibly Pluto supports this point of view. Impacts of asteroids and comets on the Earth as well as on other planetary bodies leads to the ejection of life-bearing dust and rocks and a mixing of microbiota on a planetary scale and on an even wider galactic scale. It appears inevitable that the entire galaxy will be a single connected biosphere.

Keywords

Enceladus Comets Interstellar dust 

References

  1. Al-Mufti, S.: PhD thesis, Cardiff University (1985) Google Scholar
  2. Allen, D.A., Wickramasinghe, D.T.: Nature 294, 239 (1981) ADSCrossRefGoogle Scholar
  3. Allen, D.A., Wickramasinghe, D.T.: Nature 329, 615 (1987) ADSCrossRefGoogle Scholar
  4. Altwegg, K., et al.: Sci. Adv. 2, 5 (2016) CrossRefGoogle Scholar
  5. Arrhenius, S.: Worlds in the Making. Harper, London (1908) zbMATHGoogle Scholar
  6. Bell, E.A., Boehnke, P., Harrison, T.M., Mao, W.L.: Proc. Natl. Acad. Sci. USA 112, 14518 (2015) ADSCrossRefGoogle Scholar
  7. Bieler, A., et al.: Nature 526, 678 (2015) ADSCrossRefGoogle Scholar
  8. Biver, N., et al.: Sci. Adv. 1(9), 150086 (2015) CrossRefGoogle Scholar
  9. Capaccioni, F., et al.: Science 347, A0628 (2015) CrossRefGoogle Scholar
  10. Deamer, D.: First Life. University of California Press, Berkeley (2012) Google Scholar
  11. Fagerbakke, K.M., Heldal, M., Norland, S.: Aquat. Microb. Ecol. 10, 15 (2009) CrossRefGoogle Scholar
  12. Grebennikova, T.V., Syroeshkin, A.V., Shubralova, E.V., Eliseeva, O.V., Kostina, L.V., et al.: Sci. World J. 218, 7360147 (2018).  https://doi.org/10.1155/2018/7360147 CrossRefGoogle Scholar
  13. Gregory, P.H., Monteith, J.L. (eds.): Airborne Microbes. Symposium of the Society for General Microbiology, vol. 17. Cambridge University Press, Cambridge (1967) Google Scholar
  14. Harris, M.J., et al.: In: Hoover, e.R.B., Levin, G.V., Paepe, R.R., Rozanov, A.Y. (eds.) Instruments, Methods, and Missions for Astrobiology IV. Proc. SPIE Conf., vol. 4495, p. 192. SPIE, Bellingham (2002) CrossRefGoogle Scholar
  15. Hoyle, F., Wickramasinghe, N.C.: Lifecloud: The Origin of Life in the Galaxy. Dent, London (1978) Google Scholar
  16. Hoyle, F., Wickramasinghe, N.C.: Diseases from Space. Dent, London (1979) Google Scholar
  17. Hoyle, F., Wickramasinghe, N.C.: Evolution from Space. Dent, London (1981a) zbMATHGoogle Scholar
  18. Hoyle, F., Wickramasinghe, N.C.: In: Ponnamperuma, C. (ed.) Comets and the Origin of Life, p. 227. Reidel, Dordrecht (1981b) CrossRefGoogle Scholar
  19. Hoyle, F., Wickramasinghe, N.C.: Living Comets. Univ. College, Cardiff Press, Cardiff (1985) Google Scholar
  20. Hoyle, F., Wickramasinghe, N.C.: Astronomical Origins of Life: Steps Towards Panspermia. Kluwer Academic, Dordrect (2000) CrossRefGoogle Scholar
  21. Hoyle, F., Wickramasinghe, N.C., Al-Mufti, S., Olavesen, A.H., Wickramasinghe, D.T.: Astrophys. Space Sci. 83, 405 (1982) ADSCrossRefGoogle Scholar
  22. Kopparapu, R.K.: Astrophys. J. 767, L8 (2013) ADSCrossRefGoogle Scholar
  23. Plane, J., Diego, J., Gomez-Martin, J.C., et al.: In: 41st COSPAR Scientific Assembly (2016). http://adsabs.harvard.edu/abs/2016cosp41E1569P Google Scholar
  24. Postberg, F., Khawaja, N., Abel, B., et al.: Nature (2018).  https://doi.org/10.1038/s41586-018-0246-4 CrossRefGoogle Scholar
  25. Russell, M.J., Murray, A.E., Hand, K.P.: Astrobiology (2017).  https://doi.org/10.1089/ast.2016.1600 CrossRefGoogle Scholar
  26. Shivaji, S., et al.: Int. J. Syst. Evol. Microbiol. 59, 2977 (2009) CrossRefGoogle Scholar
  27. Spencer, J.R., Nimmo, F.: Annu. Rev. Earth Planet. Sci. 41, 693 (2013) ADSCrossRefGoogle Scholar
  28. Spitale, J.N., Hurford, T.A., Rhoden, A.R., et al.: Nature 521, 57 (2015) ADSCrossRefGoogle Scholar
  29. Steele, E.J., Al-Mufti, S., Augustyne, K.A., et al.: Prog. Biophys. Mol. Biol. 136, 3 (2018).  https://doi.org/10.1016/j.pbiomolbio.2018.03.004 CrossRefGoogle Scholar
  30. Thomas, P.C., Tajeddine, P., Tiscereno, M.S., et al.: Icarus on Line, 11 Sept. 2015 Google Scholar
  31. Wainwright, M., Wickramasinghe, N.C., Narlikar, J.V., Rajaratnam, P.: Microbiol. Lett. 218, 161 (2003) CrossRefGoogle Scholar
  32. Wallis, M.K.: Nature 284, 431 (1980) ADSCrossRefGoogle Scholar
  33. Wallis, M.K., Wickramasinghe, N.C.: Mon. Not. R. Astron. Soc. 348, 52 (2004) ADSCrossRefGoogle Scholar
  34. Wallis, M.K., Wickramasinghe, N.C.: Astrobiol. Outreach 3, 12 (2015) Google Scholar
  35. Wickramasinghe, N.C.: Nature 252, 462 (1974) ADSCrossRefGoogle Scholar
  36. Wickramasinghe, N.C.: The Search for Our Cosmic Ancestry. World Scientific, Singapore (2015) Google Scholar
  37. Wickramasinghe, D.T., Allen, D.A.: Nature 287, 518 (1980) ADSCrossRefGoogle Scholar
  38. Wickramasinghe, D.T., Allen, D.A.: Nature 323, 44 (1986) ADSCrossRefGoogle Scholar
  39. Wickramasinghe, N.C., Wickramasinghe, J.T.: Astrophys. Space Sci. 286, 453 (2003) ADSCrossRefGoogle Scholar
  40. Wickramasinghe, D.T., Hoyle, F., Wickramasinghe, N.C., Al-Mufti, S.: Earth Moon Planets 36, 295 (1986) ADSCrossRefGoogle Scholar
  41. Wickramasinghe, N.C., Hoyle, F., Lloyd, D.: Astron. Astrophys. 240, 161 (1996) Google Scholar
  42. Wickramasinghe, J.T., Wickramasinghe, N.C., Napier, W.M.: Comets and the Origin of Life. World Scientific, Singapore (2010) Google Scholar
  43. Wickramasinghe, C., Wainwright, M., Tokoro, G., Hoover, R.B.: In: Instruments, Methods, and Missions for Astrobiology XVII. Proc. SPIE, vol. 9606, p. 96061R (2015).  https://doi.org/10.1117/12.2222098 CrossRefGoogle Scholar
  44. Wickramasinghe, N.C., Rycroft, Wickramasinghe D. T, M.J., et al.: Adv. Astrophys. (2018) Google Scholar
  45. Yabushita, S.: Mon. Not. R. Astron. Soc. 260, 819 (1993) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • N. C. Wickramasinghe
    • 4
    • 5
    • 1
  • Dayal T. Wickramasinghe
    • 4
    • 2
  • Edward J. Steele
    • 4
    • 3
  1. 1.Buckingham Centre for AstrobiologyUniversity of BuckinghamBuckinghamUK
  2. 2.College of Physical and Mathematical SciencesAustralian National UniversityCanberraAustralia
  3. 3.5CY O’Connor ERADE Village FoundationPiara WatersAustralia
  4. 4.Centre for AstrobiologyUniversity of RuhunaMataraSri Lanka
  5. 5.Institute for the Study of Panspermia and AstrobiologyGifuJapan

Personalised recommendations