Advertisement

Astrophysics and Space Science

, 363:245 | Cite as

Perihelion precession in binary systems: higher order corrections

  • Carlos Marín
  • Jorge Poveda
Original Article
  • 72 Downloads

Abstract

Higher order corrections (up to n-th order) are obtained for the perihelion precession in binary systems like OJ287 using the Schwarzschild metric and complex integration. The corrections are performed considering the third root of the motion equation and developing the expansion in terms of \(r_{s}/ (a(1-e^{2}) )\).The results are compared with other expansions that appear in the literature giving corrections to second and third order. Finally, we simulate the shape of relativistic orbits for binary systems with different masses.

Keywords

Perihelium advance Binary systems Orbits 

References

  1. Biesel, O.: The Precession of Mercury’s Perihelion. Leiden University, Leiden (2008) Google Scholar
  2. Carroll, S.M.: An Introduction to General Relativity, pp. 161–172. Addison-Wesley, Reading (2004) Google Scholar
  3. D’Eliseo, M.M.: Higher-order corrections to the relativistic perihelion advance and the mass of binary pulsars. Astrophys. Space Sci. 332(1), 121–128 (2011) ADSCrossRefGoogle Scholar
  4. Do-Nhat, T.: Full asymptotic expansion of the relativistic orbit of a test particle under the exact Schwarzschild metric. Phys. Lett. A 238, 328–336 (1998) ADSMathSciNetCrossRefGoogle Scholar
  5. Einstein, A.: Die grundlage der allgemeinen relativitätstheorie. Ann. Phys. (1916) Google Scholar
  6. Fokas, A., Vayegas, C.: In: Analytical computation of the Mercury perihelion precession via the relativistic gravitational law, University of Cambridge, Athens Greece (2016) Google Scholar
  7. Hartle, J.: Gravity: An Introduction to Einstein’s General Relativity. Addison-Wesley, Reading (2003) Google Scholar
  8. Hobson, M.P., Efstathiou, G., Lasenby, A.N.: General Relativity. An Introduction for Physicists, pp. 185–188. Cambridge University Press, Cambridge (2006) CrossRefGoogle Scholar
  9. Kenyon, I.R.: General Relativity, pp. 111–113. Oxford University Press, London (1996) Google Scholar
  10. Lemmon, T.J., Mondragon, A.R.: Alternative derivation of the relativistic contribution to perihelic precession (2009). arXiv:0906.1221v2 [astro-ph.EP]
  11. Marín, C.: Cayendo hacia un agujero negro de Schwarzschild. Adv. Sci. Eng. 1(1), 79–90 (2009) Google Scholar
  12. Marín, C.: La Expansión del Universo, una Introducción a Cosmología, Relatividad General y Física de Partículas 2nd edn. Universidad San Francisco de Quito, Quito-Ecuador (2011) Google Scholar
  13. Martin, J.L.: General Relativity, a Guide to Its Consequences for Gravity and Cosmology pp. 114–119. Wiley, New York (1988) Google Scholar
  14. Misner, C., Thorne, K., Wheeler, J.: Gravitation, p. 607. Freeman, New York (1973) Google Scholar
  15. Pihajoki, P.: The Supermassive Binary Black Hole System OJ287. Annales Universitatis Turkuensis (2014), Turka Google Scholar
  16. Rodriguez, C., Marín, C.: Higher-order corrections for the deflection of light around a massive object. Diagonal Padé approximants and ray-tracing algorithms. Int. J. Astron. Astrophys. 8, 121–141 (2018) CrossRefGoogle Scholar
  17. Rosales, M., Castro-Quilantán, J.: The precession of Mercury’s perihelion via perturbation theory. Escuela Superior de Física y Matemáticas. Instituto Politécnico Nacional, México (1983) Google Scholar
  18. Scharf, G.: Schwarzschild Geodesics in Terms of Elliptic Functions and the Related Red Shift. Universität, Zürich (2011) CrossRefGoogle Scholar
  19. Shreya, B., Sayantani, B., Srimanta, B., Tejinder, P.S.: Constraints on fourth order gravity from binary pulsar and gravitational waves (25 May 2017). arXiv:1601.02357v3 [gr-qc]
  20. Valtonen, M.J., et al.: Primary black hole spin in OJ287 as determined by the general relativity centenary flare. Astrophys. J. Lett. 819(2), L37 (2016) ADSCrossRefGoogle Scholar
  21. Weinberg, S.: Gravitation and Cosmology, Principles and Applications of the General Theory of Relativity, pp. 194–198. Wiley, New York (1972) Google Scholar
  22. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61(1), 1–23 (1989) ADSMathSciNetCrossRefGoogle Scholar
  23. Weinberg, S.: Cosmology, pp. 43–44. Oxford University Press, London (2008) zbMATHGoogle Scholar
  24. Will, C.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversidad San Francisco de QuitoQuitoEcuador

Personalised recommendations