Astrophysics and Space Science

, 363:231 | Cite as

Comparison of GPS TEC with modelled values from IRI 2016 and IRI-PLAS over Istanbul, Turkey

  • Ramazan AtıcıEmail author
Original Article


The Total Electron Content (TEC) prediction performances of the empirical IRI model and IRI-PLAS model were investigated by comparing the GPS-based TEC values provided by the IONOLAB group. TEC values were obtained on equinox (March 21 and September 23) and solstice (June 21, and December 21) days in low (2009), medium (2012) and high (2015) solar activity periods at Istanbul, Turkey. The prediction performances of the models were statistically analyzed based on the differences between the GPS-TEC and the empirical models, considering the maximum and minimum deviations, the correlation analysis and the root mean square error (RMSE). As a result of the investigation, it is seen that the empirical models have similar predictive performances when the plasmaspheric effects are neglected, and the IRI-PLAS estimations are generally a little closer to the observed GPS-TEC values than all options of IRI-2016 model. Also, it can be said that “IRI2001”, one of the IRI-2016’s “topside” options, can make better predictions than other options and “IG” solar proxy option of IRI-PLAS model is a more appropriate option than the others in TEC calculations over Istanbul, Turkey.


IRI model IRI-PLAS model Mid-latitude ionosphere IONOLAB-TEC 


  1. Alçay, S., Oztan, G., Selvi, H.Z.: Comparison of IRI_PLAS and IRI_2012 model predictions with GPS-TEC measurements in different latitude regions. Ann. Geophys. 60(5), 0549 (2017) CrossRefGoogle Scholar
  2. Amin, M.M.: Influence of lightning on electron density variation in the ionosphere using WWLLN lightning data and GPS data, University of Cape Town (2015) Google Scholar
  3. Ansari, K., Corumluoglu, O., Panda, S.K.: Analysis of ionospheric TEC from GNSS observables over the Turkish region and predictability of IRI and SPIM models. Astrophys. Space Sci. 362(4), 65 (2017) ADSCrossRefGoogle Scholar
  4. Arikan, F., Nayir, H., Sezen, U., Arikan, O.: Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci. 43(4), RS4004 (2008) ADSCrossRefGoogle Scholar
  5. Arikan, F., Sezen, U., Gulyaeva, T., Cilibas, O.: Online, automatic, ionospheric maps: IRI-PLAS-MAP. Adv. Space Res. 55(8), 2106–2113 (2015) ADSCrossRefGoogle Scholar
  6. Atıcı, R., Sağır, S.: The effect of QBO on foE. Adv. Space Res. 60(2), 357–362 (2017) ADSCrossRefGoogle Scholar
  7. Atıcı, R., Güzel, E., Canyılmaz, M., Sağır, S.: The effect of lightning-induced electromagnetic waves on the electron temperatures in the lower ionosphere. Kuwait J. Sci. Eng. 43, 143–149 (2016) Google Scholar
  8. Basu, S., Basu, S., Valladares, C., Yeh, H.C., Su, S.Y., MacKenzie, E., Doherty P, .: Ionospheric effects of major magnetic storms during the International Space Weather Period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes. J. Geophys. Res. Space Phys. 106(A12), 30389–30413 (2001) ADSCrossRefGoogle Scholar
  9. Bilitza, D.: International reference ionosphere 2000. Radio Sci. 36(2), 261–275 (2001) ADSCrossRefGoogle Scholar
  10. Bilitza, D., McKinnell, L.-A., Reinisch, B., Fuller-Rowell, T.: The international reference ionosphere today and in the future. J. Geod. 85(12), 909–920 (2011) ADSCrossRefGoogle Scholar
  11. Bilitza, D., Brown, S.A., Wang, M.Y., Souza, J.R., Roddy, P.A.: Measurements and IRI model predictions during the recent solar minimum. J. Atmos. Sol.-Terr. Phys. 86, 99–106 (2012) ADSCrossRefGoogle Scholar
  12. Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., Reinisch B, .: The International Reference Ionosphere 2012—a model of international collaboration. J. Space Weather Space Clim. 4, A07 (2014) CrossRefGoogle Scholar
  13. Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., Huang, X.: International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15(2), 418–429 (2017) ADSCrossRefGoogle Scholar
  14. Bittencourt, J.A.: Fundamentals of Plasma Physics. Springer, Berlin (2013) zbMATHGoogle Scholar
  15. Çetin, K., Özcan, O., Korlaelçi, S.: The interaction between stratospheric monthly mean regional winds and sporadic-E. Chin. Phys. B 26(3), 039401 (2017) ADSCrossRefGoogle Scholar
  16. Doherty, P., Coster, A.J., Murtagh, W.: Space weather effects of October–November 2003. GPS Solut. 8(4), 267–271 (2004) CrossRefGoogle Scholar
  17. Ezquer, R.G., Scidá, L.A., Orué, Y.M., Nava, B., Cabrera, M.A., Brunini, C.: NeQuick 2 and IRI Plas VTEC predictions for low latitude and South American sector. Adv. Space Res. 61(7), 1803–1818 (2018) ADSCrossRefGoogle Scholar
  18. Fagundes, P.R., Cardoso, F., Fejer, B., Venkatesh, K., Ribeiro, B., Pillat, V.: Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. J. Geophys. Res. Space Phys. 121(6), 5613–5625 (2016) ADSCrossRefGoogle Scholar
  19. Gulyaeva, T.: International standard model of the Earth’s inosphere and plasmasphere. Astron. Astrophys. Trans. 22(4–5), 639–643 (2003) ADSGoogle Scholar
  20. Gulyaeva, T., Bilitza, D.: Towards ISO standard Earth ionosphere and plasmasphere model. In: New Developments in the Standard Model. NOVA Publishers, New York (2012). Google Scholar
  21. Gulyaeva, T.L., Huang, X., Reinisch, B.W.: Plasmaspheric extension of topside electron density profiles. Adv. Space Res. 29(6), 825–831 (2002) ADSCrossRefGoogle Scholar
  22. Gulyaeva, T., Arikan, F., Sezen, U., Poustovalova, L.: Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model. J. Atmos. Sol.-Terr. Phys. 172, 122–128 (2018) ADSCrossRefGoogle Scholar
  23. Karatay, S., Cinar, A., Arikan, F.: Ionospheric responses during equinox and solstice periods over Turkey. Adv. Space Res. 60(9), 1958–1967 (2017) ADSCrossRefGoogle Scholar
  24. Laštovička, J.: Forcing of the ionosphere by waves from below. J. Atmos. Sol.-Terr. Phys. 68(3–5), 479–497 (2006) ADSCrossRefGoogle Scholar
  25. Maltseva, O., Mozhaeva, N., Nikitenko, T.: Comparative analysis of two new empirical models IRI-Plas and NGM (the Neustrelitz Global model). Adv. Space Res. 55(8), 2086–2098 (2015) ADSCrossRefGoogle Scholar
  26. Nayir, H., Arikan, F., Arikan, O., Erol, C.: Total electron content estimation with Reg-Est. J. Geophys. Res. Space Phys. 112(A11), A11313 (2007) ADSCrossRefGoogle Scholar
  27. Okoh, D., Eze, A., Adedoja, O., Okere, B., Okeke, P.: A comparison of IRI-TEC predictions with GPS-TEC measurements over Nsukka, Nigeria. Space Weather 10(10), S10002 (2012) ADSCrossRefGoogle Scholar
  28. Pasko, V., Inan, U., Bell, T., Taranenko, Y.N.: Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res. Space Phys. 102(A3), 4529–4561 (1997) ADSCrossRefGoogle Scholar
  29. Pulinets, S., Boyarchuk, K., Hegai, V., Kim, V., Lomonosov, A.: Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling. Adv. Space Res. 26(8), 1209–1218 (2000) ADSCrossRefGoogle Scholar
  30. Sağır, S., cıR, A., Özcan, O., Yüksel, N.: The effect of the stratospheric QBO on the neutral density of the D region. Ann. Geophys. 58(3), 0331 (2015) Google Scholar
  31. Sezen, U., Arikan, F., Arikan, O., Ugurlu, O., Sadeghimorad, A.: Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather 11(5), 297–305 (2013) ADSCrossRefGoogle Scholar
  32. Sezen, U., Gulyaeva, T.L., Arikan, F.: Performance of solar proxy options of IRI-Plas model for equinox seasons. J. Geophys. Res. Space Phys. 123(2), 1441–1456 (2018) ADSCrossRefGoogle Scholar
  33. Yiğit, E., Medvedev, A.S.: Internal wave coupling processes in Earth’s atmosphere. Adv. Space Res. 55(4), 983–1003 (2015) ADSCrossRefGoogle Scholar
  34. Yiğit, E., Knížová, P.K., Georgieva, K., Ward, W.: A review of vertical coupling in the atmosphere–ionosphere system: effects of waves, sudden stratospheric warmings, space weather, and of solar activity. J. Atmos. Sol.-Terr. Phys. 141, 1–12 (2016) ADSCrossRefGoogle Scholar
  35. Zakharenkova, I., Cherniak, I.V., Krankowski, A., Shagimuratov, I.: Vertical TEC representation by IRI 2012 and IRI Plas models for European midlatitudes. Adv. Space Res. 55(8), 2070–2076 (2015) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Basic Education, Faculty of EducationMus Alparslan UniversityMusTurkey

Personalised recommendations