Astrophysics and Space Science

, 363:184 | Cite as

Efficacy of magnetically driven temperature-dependent plastic flows in exciting the magnetosphere of CXOU J164710.2-455216

  • Chu W. Kwang-Hua
Original Article


Using verified transition state theory and quantum plasticity theory we calculate the temperature-dependent shear (strain) rates as well as temperature-dependent (shear) viscosity considering magnetically driven plastic flows in the neutron star (like CXOU J164710.2-455216) crust. Our numerical results which are based on previous works like the critical shear stress as well as the minimum shear (strain) rate of crust (around \(1~\mbox{rad}/\mbox{year}\)) demonstrate that a plastic deformation of the neutron star crust could induced a very slight twist (or shear) in the external magnetic field. We then extend Lander’s calculation of magnetospheric twist to slip-flow cases that will generated currents in the magnetosphere of the magnetar, say, CXOU J164710.2-455216 in Westerlund 1. The latter is believed to be the direct cause of the observed X-ray outburst by Muno et al. once we examine the associated energy scales for corresponding magnetic fields considering the age or history of CXOUJ164710.2-455216 which can be estimated from available measurements or observations. Our results and analysis of relevant energy scales confirm the onset of the soft gamma repeater outburst is controlled by magnetospheric dissipation induced by the plastic motions of the crust.


Activation energy Slip Activation volume CXOU J164710.2-455216 



The only author thanks the Referees for their detailed comments. The only author would like to thank Prof. Gao (Z.-F./XAO, CAS, Urumqi, China) for his hospitality during the only author’s two-days visit at XAO (around the beginning of Sep. 2017).


  1. Abramowski, A., et al. (H.E.S.S. Collaboration): Astron. Astrophys. 537, A114 (2012) CrossRefGoogle Scholar
  2. An, H., Kaspi, V.M., Archibald, R., Cumming, A.: Astrophys. J. 763, 82 (2014) ADSCrossRefGoogle Scholar
  3. Beloborodov, A.M., Levin, Y.: Astrophys. J. Lett. 794, L24 (2014) ADSCrossRefGoogle Scholar
  4. Beskin, V.S., Balogh, A., Falanga, M., Treumann, R.A.: Space Sci. Rev. 191, 1–12 (2015) ADSCrossRefGoogle Scholar
  5. Bransgrove, A., Levin, Y., Beloborodov, A.: arXiv:1709.09167 (2017)
  6. Broglia, R.A.: Surf. Sci. 500, 759–792 (2002) ADSCrossRefGoogle Scholar
  7. Castillo, G.A.R., Israel, G.L., Esposito, P., Pons, J.A., Rea, N., Turolla, R., Viganó, D., Zane, S.: Mon. Not. R. Astron. Soc. 441, 1305–1316 (2014) ADSCrossRefGoogle Scholar
  8. Castro-Tirado, A.J., et al.: Nature 455, 506–509 (2008) ADSCrossRefGoogle Scholar
  9. Chu, W.K.-H.: Z. Angew. Math. Phys. 47, 591–599 (1996) CrossRefGoogle Scholar
  10. Chu, Z.K.-H.: Can. J. Phys. 90(1), 17–23 (2012) ADSCrossRefGoogle Scholar
  11. Chu, Z.K.-H.: Z. Angew. Math. Mech. 85, 147–151 (2005) CrossRefGoogle Scholar
  12. Chugunov, A.I., Horowitz, C.J.: Mon. Not. R. Astron. Soc. 407, L54–L58 (2010) ADSCrossRefGoogle Scholar
  13. Cumming, A., Arras, P., Zweibel, E.: Astrophys. J. 609, 999–1017 (2004) ADSCrossRefGoogle Scholar
  14. de Gennes, P.G.: Langmuir 18(9), 3413–3414 (2002) CrossRefGoogle Scholar
  15. Duncan, R.C.: Nature 497, 574–576 (2013) ADSCrossRefGoogle Scholar
  16. Eyring, H., Ree, T.: Proc. Natl. Acad. Sci. USA 41, 118–122 (1955) ADSCrossRefGoogle Scholar
  17. Fredrickson, J.W., Eyring, H.: Am. Inst. Mining Met. Engrs. Tech. Rept. 2423 (1948) Google Scholar
  18. Gavriil, F.P., Dib, R., Kaspi, V.M.: Astrophys. J. 736, 138 (2011) ADSCrossRefGoogle Scholar
  19. Glasstone, S., Laidler, K., Eyring, H.: The Theory of Rate Processes. McGraw-Hill, New York (1941) Google Scholar
  20. Goldreich, P., Reisenegger, A.: Astrophys. J. 395, 250–258 (1992) ADSCrossRefGoogle Scholar
  21. Gourgouliatos, K.N., Cumming, A.: Mon. Not. R. Astron. Soc. 438(2), 1618–1629 (2014) ADSCrossRefGoogle Scholar
  22. Gourgouliatos, K.N., Cumming, A.: Mon. Not. R. Astron. Soc. 446(1), 1121–1128 (2015) ADSCrossRefGoogle Scholar
  23. Gourgouliatos, K.N., Cumming, A., Reisenegger, A., Armaza, C., Lyutikov, M., Valdivia, J.A.: Mon. Not. R. Astron. Soc. 434(3), 2480–2490 (2013) ADSCrossRefGoogle Scholar
  24. Hollerbach, R., Rüdiger, G.: Mon. Not. R. Astron. Soc. 347(4), 1273–1278 (2004) ADSCrossRefGoogle Scholar
  25. Jackson, J.D.: Classical Electrodynamics, 3rd. edn. Wiley, New York (1999) zbMATHGoogle Scholar
  26. Jones, P.B.: Mon. Not. R. Astron. Soc. 233, 875–885 (1988) ADSCrossRefGoogle Scholar
  27. Kaspi, V.M., Beloborodov, A.M.: Annu. Rev. Astron. Astrophys. 55, 261–301 (2017) ADSCrossRefGoogle Scholar
  28. Kojima, Y., Kisaka, S.: Mon. Not. R. Astron. Soc. 421(3), 2722–2730 (2012) ADSCrossRefGoogle Scholar
  29. Krausz, A.S., Eyring, H.: J. Appl. Phys. 42, 2382–2385 (1971) ADSCrossRefGoogle Scholar
  30. Krausz, A.S., Eyring, H.: Deformation Kinetics. Wiley, New York (1975) Google Scholar
  31. Kumar, R.K., Bandurin, D.A., Pellegrino, F.M.D., Cao, Y., Principi, A., Guo, H., Auton, G.H., Shalom, M.B., Ponomarenko, L.A., Falkovich, G., Watanabe, K., Taniguchi, T., Grigorieva, I.V., Levitov, L.S., Polini, M., Geim, A.K.: Nat. Phys. 12, 1182–1185 (2017) CrossRefGoogle Scholar
  32. Kwang-Hua, C.W.: NANO 7(5), 1250040 (2012) CrossRefGoogle Scholar
  33. Kwang-Hua, C.W.: Can. J. Phys. 91(3), 268–272 (2013) ADSCrossRefGoogle Scholar
  34. Lander, S.K.: Astrophys. J. Lett. 824, L21 (2016) ADSCrossRefGoogle Scholar
  35. Lattimer, J.M.: Annu. Rev. Nucl. Part. Sci. 62, 485 (2012) ADSCrossRefGoogle Scholar
  36. Li, X.y., Levin, Y., Beloborodov, A.M.: Astrophys. J. 833, 189 (2016) ADSCrossRefGoogle Scholar
  37. Lin, L., et al.: Astrophys. J. Lett. 740, L16 (2011) ADSCrossRefGoogle Scholar
  38. Lyutikov, M.: Mon. Not. R. Astron. Soc. 447, 1407–1417 (2015) ADSCrossRefGoogle Scholar
  39. Mazets, E.P., Golenetskij, S.V., Guryan, Y.A.: Sov. Astron. Lett. 5, 343–344 (1979a) ADSGoogle Scholar
  40. Mazets, E.P., Golentskii, S.V., Ilinskii, V.N., Aptekar, R.L., Guryan, I.A.: Nature 282, 587–589 (1979b) ADSCrossRefGoogle Scholar
  41. Mereghetti, S.: Astron. Astrophys. Rev. 15, 225–287 (2008) ADSCrossRefGoogle Scholar
  42. Mereghetti, S., Pons, J.A., Melatos, A.: Space Sci. Rev. 191, 315–338 (2015) ADSCrossRefGoogle Scholar
  43. Miklavcic, M., Wang, C.Y.: Z. Angew. Math. Phys. 55(2), 235–246 (2004) MathSciNetCrossRefGoogle Scholar
  44. Muno, M.P., Gaensler, B.M., Clark, J.S., de Grijs, R., Pooley, D., Stevens, I.R., Portegies Zwart, S.F.: Mon. Not. R. Astron. Soc. 378, L44–L48 (2007) ADSCrossRefGoogle Scholar
  45. Navier, C.L.M.: C. R. Acad. Sci. 6, 389–440 (1827) Google Scholar
  46. Page, D., Reddy, S.: In: Bertulani, C.A., Piekarewicz, J. (eds.) Neutron Star Crust. Nova Science Publishers Inc., London (2013). arXiv:1201.5602 Google Scholar
  47. Perna, R., Pons, J.A.: Astrophys. J. Lett. 727(2), L51 (2011) ADSCrossRefGoogle Scholar
  48. Rea, N., Esposito, P.: arXiv:1101.4472 (2011)
  49. Regel’, V.R., Slutsker, A.I., Tomashevskiı̌, É.E.: Sov. Phys. Usp. 15, 45–65 (1972) ADSCrossRefGoogle Scholar
  50. Smoluchowski, R., Welch, D.: Phys. Rev. Lett. 24, 1191–1192 (1970) ADSCrossRefGoogle Scholar
  51. Thompson, C., Duncan, R.C.: Astrophys. J. 473, 322–342 (1996) ADSCrossRefGoogle Scholar
  52. Thompson, C., Lyutikov, M., Kulkarni, S.R.: Astrophys. J. 574, 332–355 (2002) ADSCrossRefGoogle Scholar
  53. Thompson, C., Yang, H., Ortiz, N.: Astrophys. J. 841, 54 (2017) ADSCrossRefGoogle Scholar
  54. Turolla, R., Esposito, P.: Int. J. Mod. Phys. D 22, 1330024 (2013) ADSCrossRefGoogle Scholar
  55. Turolla, R., Zane, S., Watts, A.L.: Rep. Prog. Phys. 78(11), 116901 (2015) ADSCrossRefGoogle Scholar
  56. Viganó, D., Rea, N., Pons, J.A., Aguilera, D.N., Miralles, J.A.: Mon. Not. R. Astron. Soc. 434, 123–141 (2013) ADSCrossRefGoogle Scholar
  57. Wood, T.S., Hollerbach, R.: Phys. Rev. Lett. 114, 191101 (2015) ADSCrossRefGoogle Scholar
  58. Zelati, F.C., Rea, N., Pons, J., Campana, S., Esposito, P.: arXiv:1710.04671 (2017)

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Transfer CentreTaipeiTaiwan, ROC
  2. 2.Distribution CentreGolmudChina
  3. 3.Xinjiang Astronomical ObservatoryChinese Academy of SciencesUrumqiChina

Personalised recommendations