Advertisement

The effect of magnetic field morphology on the structure of massive IRDC clumps

  • Nahid Bahmani
  • Mohsen Nejad-Asghar
Original Article
  • 34 Downloads

Abstract

Infrared dark clouds (IRDCs) have dense elongated clumps and filaments with the favorable viewing condition of being on the near-side of a bright mid-infrared background. The clumps usually have multiple cores around the center. In this work, we study the effect of magnetic field morphology on the structure of massive IRDC clumps. To achieve this goal, we consider an axisymmetric isothermal oblate IRDC clump, embedded into a constant external magnetic field. We assume a polynomial function for the magnetic field morphology inside the clump. We use the numerical iterative methods to solve the equations: the successive over-relaxation method to find the magnetic and gravitational fluxes, and then the biconjugate gradient method to find the optimized values of mass and current densities. The results show that the IRDC clump will be very elongated along the perpendicular direction of the external magnetic field lines. Also, the assumption of choosing of a polynomial function for the magnetic field morphology leads to the formation of dense regions around the center. The greater the density of the central region, the larger the density of these dense regions and the closer to the center. The presence of these dense regions can lead to the formation of cores at these points.

Keywords

ISM: structure ISM: clouds ISM: magnetic fields Stars: formation (Galaxy:) local interstellar matter 

References

  1. Battersby, C., Bally, J., Jackson, J.M., Ginsburg, A., Shirley, Y.L., Schlingman, W., Glenn, J.: Astrophys. J. 721, 222 (2010) ADSCrossRefGoogle Scholar
  2. Butler, M.J., Tan, J.C.: Astrophys. J. 696, 484 (2009) ADSCrossRefGoogle Scholar
  3. Carey, S.J., Clark, F.O., Egan, M.P., et al.: Astrophys. J. 508, 721 (1998) ADSCrossRefGoogle Scholar
  4. Carey, S.J., Egan, M.P., Kuchar, T.A., Mizuno, D., Feldman, P.A., Redman, R.O., Price, S.D.: Bull. Am. Astron. Soc. 32, 1396 (2000). 197th AAS Meeting ADSGoogle Scholar
  5. Chambers, E.T., Jackson, J.M., Rathborne, J.M., Simon, R.: Astrophys. J. 181, 360 (2009) ADSCrossRefGoogle Scholar
  6. Chandrasekhar, S., Fermi, E.: Astrophys. J. 118, 116 (1953) ADSMathSciNetCrossRefGoogle Scholar
  7. Chira, R.A., Beuther, H., Linz, H., Schuller, F., Walmsley, C.M., Menten, K.M., Bronfman, L.: Astron. Astrophys. 552, 40 (2013) CrossRefGoogle Scholar
  8. Contreras, Y., Garay, G., Rathborne, J.M., Sanhueza, P.: Mon. Not. R. Astron. Soc. 456, 2041 (2016) ADSCrossRefGoogle Scholar
  9. Crutcher, R.M.: Annu. Rev. Astron. Astrophys. 50, 29 (2012) ADSCrossRefGoogle Scholar
  10. Egan, M.P., Shipman, R.F., Price, S.D., Carey, S.J., Clark, F.O., Cohen, M.: Astrophys. J. 494, 199 (1998) ADSCrossRefGoogle Scholar
  11. Feng, S., Beuther, H., Zhang, Q., Henning, Th., Linz, H., Ragan, S., Smith, R.: Astron. Astrophys. 592, 21 (2016) ADSCrossRefGoogle Scholar
  12. Fitzpatrick, R.: An Introduction to Celestial Mechanics. Cambridge University Press, Cambridge (2012) CrossRefzbMATHGoogle Scholar
  13. Henshaw, J.D., Caselli, P., Fontani, F., Jiménez-Serra, I., Tan, J.C., Longmore, S.N., Pineda, J.E., Parker, R.J., Barnes, A.T.: Mon. Not. R. Astron. Soc. 463, 146 (2016) ADSCrossRefGoogle Scholar
  14. Hernandez, A.K., Tan, J.C.: Astrophys. J. 730, 44 (2011) ADSCrossRefGoogle Scholar
  15. Hoq, S., Clemens, D.P., Guzmán, A.E., Cashman, L.R.: Astrophys. J. 836, 199 (2017) ADSCrossRefGoogle Scholar
  16. Lim, W., Tan, J.C.: Astrophys. J. 780, 29 (2014) ADSCrossRefGoogle Scholar
  17. Mouschovias, T.C.H.: Astrophys. J. 206, 753 (1976) ADSCrossRefGoogle Scholar
  18. Nejad-Asghar, M.: Astrophys. Space Sci. 361, 384 (2016) ADSCrossRefGoogle Scholar
  19. Pérault, M., et al.: Astron. Astrophys. 315, 165 (1996) Google Scholar
  20. Pillai, T., Wyrowski, F., Carey, S.J., Menten, K.M.: Astron. Astrophys. 450, 569 (2006) ADSCrossRefGoogle Scholar
  21. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN. The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007) zbMATHGoogle Scholar
  22. Sanhueza, P., Jackson, J.M., Foster, J.B., Garay, G., Silva, A., Finn, S.C.: Astrophys. J. 756, 60 (2012) ADSCrossRefGoogle Scholar
  23. Sanhueza, P., Jackson, J.M., Zhang, Q., Guzmán, A.E., Lu, X., Stephens, I.W., Wang, K., Tatematsu, K.: Astrophys. J. 841, 97 (2017) ADSCrossRefGoogle Scholar
  24. Santos, F.P., Busquet, G., Franco, G.A.P., Girat, J.M., Zhang, Q.: Astrophys. J. 832, 186 (2016) ADSCrossRefGoogle Scholar
  25. Simon, R., Jackson, J.M., Rathborne, J.M., Chambers, E.T.: Astrophys. J. 639, 227 (2006) ADSCrossRefGoogle Scholar
  26. Sokolov, V., Wang, K., Pineda, J.E., Caselli, P., Henshaw, J.D., Tan, J.C., Fontani, F., Jimenez-Serra, I., Lim, W.: (2017). arXiv:1706.08903
  27. Stahler, S.W., Palla, F.: The Formation of Stars. Wiley-VCH, Weinheim (2004) CrossRefGoogle Scholar
  28. Tomisaka, K.: Astrophys. J. 438, 226 (1995) ADSCrossRefGoogle Scholar
  29. Wang, K., Zhang, Q., Wu, Y., Zhang, H.: Astrophys. J. 735, 64 (2011) ADSCrossRefGoogle Scholar
  30. Wang, K., Zhang, Q., Testi, L., van der Tak, F., Wu, Y., Zhang, H., Pillai, T., Wyrowski, F., Carey, S., Ragan, S.E., Henning, T.: Mon. Not. R. Astron. Soc. 439, 3275 (2014) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of MazandaranBabolsarIran

Personalised recommendations