Preferred design and error analysis for the future dedicated deep-space Mars-SST satellite gravity mission

  • Wei ZhengEmail author
  • Zhaowei Li
Original Article


Because the precise measurement of the Martian gravitational field plays a significant role in the future Mars exploration program, the future dedicated Mars satellite-to-satellite tracking (Mars-SST) gravity mission in China is investigated in detail for producing the next generation of the Mars gravity field model with high accuracy. Firstly, a new semi-numerical synthetical error model of the cumulative Martian geoid height influenced by the major error sources of the space-borne instruments is precisely established and efficiently verified. Secondly, the deep space network in combination with the satellite-to-satellite tracking in the low-low (DSN-SST-LL) mode is a preferred design owing to the high precision determination of the gravity maps, the low technical complexity of the satellite system and the successful experiences with the Earth’s Gravity Recovery and Climate Experiment (GRACE) projects and the lunar Gravity Recovery and Interior Laboratory (GRAIL) program. Finally, the future twin Mars-SST satellites plan to adopt the optimal matching accuracy indices of the satellite-equipped sensors (e.g., \(10^{-7}\) m/s in the inter-satellite range-rate from the interferometric laser ranging system (ILRS), 35 m in the orbital position tracked by the DSN and \(3\times 10^{-11}\) m/s2 in the non-conservative force from the drag-free control system (DFCS)) and the preferred orbital parameters (e.g., the orbital altitude of \(100\pm 50\) km and the inter-satellite range of \(50\pm 10\) km).


Mars-SST mission Semi-numerical synthetical error model DSN-SST-LL mode Interferometric laser ranging system Drag-free control system Martian gravitational field recovery 



We greatly appreciate the helpful suggestions from editors and anonymous reviewers. This work was supported by the National Nature Science Foundation of China (41574014, 41774014, 11572168), the Frontier Science and Technology Innovation Project (085015) and the Innovation workstation Foundation of the Science and Technology Commission of the Central Military Commission, and the Outstanding Youth Foundation of the China Academy of Space Technology (2017), the Aerospace System Development Center Foundation of the China Aerospace Science and Technology Corporation (2017), and the Academic Conference Demonstration Brand Construction Project of the China Association for Science and Technology (2017XSHY006).

Supplementary material

10509_2018_3392_MOESM1_ESM.txt (47.3 mb)
(TXT 47.2 MB)
10509_2018_3392_MOESM2_ESM.txt (8 kb)
(TXT 7.66 KB)


  1. Balmino, G., Moynot, B., Vales, N.: Gravity field of Mars in spherical harmonics up to degree and order eighteen. J. Geophys. Res. 87, 9735–9746 (1982) ADSCrossRefGoogle Scholar
  2. Bandikova, T., Flury, J., Ko, U.D.: Characteristics and accuracies of the GRACE inter-satellite pointing. Adv. Space Res. 50(1), 123–135 (2012) ADSCrossRefGoogle Scholar
  3. Bezděk, A., Sebera, J., Klokočník, J., Kostelecký, J.: Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites. Adv. Space Res. 53( 3), 412–429 (2014) ADSCrossRefGoogle Scholar
  4. Born, G.H.: Mars physical parameters as determined from Mariner 9 observations of the natural satellites and Doppler tracking. J. Geophys. Res. 79, 4837–4844 (1974) ADSCrossRefGoogle Scholar
  5. Eapen, R.T., Sharma, R.K.: Mars interplanetary trajectory design via Lagrangian points. Astrophys. Space Sci. 353(1), 65–71 (2014) ADSCrossRefGoogle Scholar
  6. Flechtner, F., Neumayer, K.H., Christoph, D., Dobslaw, H., Fagiolini, E., Raimondo, J.C., Andreas, G.: What can be expected from the GRACE-FO laser ranging interferometer for Earth science application? Surv. Geophys. 37(2), 453–470 (2016) ADSCrossRefGoogle Scholar
  7. Flury, J., Bettadpur, S., Tapley, B.D.: Precise accelerometry onboard the GRACE gravity field satellite mission. Adv. Space Res. 42(8), 1414–1423 (2008) ADSCrossRefGoogle Scholar
  8. Gapcynski, J.P., Tolson, R.H., Michael jr, W.H.: Mars gravity field: combined Viking and Mariner 9 results. J. Geophys. Res. 82(28), 4325–4327 (1977) ADSCrossRefGoogle Scholar
  9. Genova, A., Goossens, S., Lemoine, F.G., Mazarico, E., Neumann, G.A., Smith, D.E., Zuber, M.T.: Global and local gravity field models of Mars with MGS, MARS Odyssey and MRO. In: 47th Lunar and Planetary Science Conference (2016) Google Scholar
  10. Guo, J., Lin, L., Bai, C., Liu, J.: The effects of solar Reimers \(\eta \) on the final destinies of Venus, the Earth, and Mars. Astrophys. Space Sci. 361, 122 (2016) ADSCrossRefGoogle Scholar
  11. Hirt, C., Claessens, S.J., Kuhn, M., Featherstone, W.E.: Kilometre-resolution gravity field of Mars: MGM2011. Planet. Space Sci. 67(1), 147–154 (2012) ADSCrossRefGoogle Scholar
  12. Hughes, J.L.: Significance of a conclusive test of Dirac’s large numbers hypothesis using precision ranging to Mars. Astrophys. Space Sci. 46(2), L15–L18 (1977) ADSCrossRefGoogle Scholar
  13. Jäggi, A., Hugentobler, U., Bock, H., Beutler, G.: Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv. Space Res. 39(10), 1612–1619 (2007) ADSCrossRefGoogle Scholar
  14. Kazarian-Le Brun, V.: The MARS’96/BALTE balloon mission to Mars: preliminary results of numerical simulations. Astrophys. Space Sci. 239(2), 197–211 (1996) ADSCrossRefGoogle Scholar
  15. Konopliv, A.S., Sjogren, W.L.: The JPL Mars gravity field, Mars50c, based upon Viking and Mariner 9 Doppler tracking data. JPL Publication 95-5, Jet Propulsion Laboratory, Pasadana, CA (1995) Google Scholar
  16. Konopliv, A.S., Yoder, C.F., Standish, E.M.: A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182(1), 23–50 (2006) ADSCrossRefGoogle Scholar
  17. Konopliv, A.S., Asmar, S.W., Folkner, W.M., Karatekin, Ö., Nunes, D.C., Smrekar, S.E., Yoder, C.F., Zuber, M.T.: Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211(1), 401–428 (2011) ADSCrossRefGoogle Scholar
  18. Konopliv, A.S., Park, R.S., Yuan, D.N., Asmar, S.W., Watkins, M.M., Williams, J.G., Fahnestock, E., Kruizinga, G., Paik, M., Strekalov, D., Harvey, N., Smith, D.E., Zuber, M.T.: The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission. J. Geophys. Res. 118(7), 1415–1434 (2013) CrossRefGoogle Scholar
  19. Konopliv, A.S., Park, R.S., Folkner, W.M.: An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260 (2016) ADSCrossRefGoogle Scholar
  20. Lemoine, F.G., Rowlands, D.D., Neumann, G.A., Smith, D.E., Pavlis, D.E., Chinn, D.S., Luthcke, S.B.: Precise orbit determination for Mars global surveyor during Hiatus and SPO. American Astronautical Society paper 99-147, AAS/AIAA Space Flight Mechanics Meeting, Breckenridge, CO, 7–10 February (1999a) Google Scholar
  21. Lemoine, F.G., Rowlands, D.D., Smith, D.E., Chinn, D.S., Pavlis, D.E., Luthcke, S.B., Neumann, G.A., Zuber, M.T.: Orbit determination for Mars Global Surveyor during mapping. Paper AAS 99-328, Astrodynamics Specialist Conference, Girdwood, AK, 16–19 August (1999b) Google Scholar
  22. Lemoine, F.G., Smith, D.E., Rowlands, D.D.: An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res. 106(E10), 23359–23376 (2001a) ADSCrossRefGoogle Scholar
  23. Lemoine, F.G., Neumann, G.A., Chinn, D.S., Smith, D.E., Zuber, M.T., Rowlands, D.D., Rubincam, D.P., Pavlis, D.E.: Solution for Mars geophysical parameters from Mars Global Surveyor tracking data. EOS Trans. AGU 82(47), F721 (2001b) Google Scholar
  24. Lemoine, F.G.: MGM1041c Gravity Model, Mars Global Surveyor Radio Sci. Arch. Vol., vol. MGS-M-RSS-5-SDP-V1, Geosci. Node, Planet. Data Syst., Wash. Univ., St. Louis, MO, March 28 (2003) Google Scholar
  25. Lemoine, F.G., Mazarico, E., Neumann, G., Chinn, D.: New solutions for the Mars static and temporal gravity field using the Mars Reconnaissance Orbiter. EOS Trans. AGU 89(53) (2008) Google Scholar
  26. Lemoine, F.G., Goossens, S., Sabaka, T.J., Nicholas, J.B., Mazarico, E., Rowlands, D.D., Loomis, B.D., Chinn, D.S., Caprette, D.S., Neumann, G.A., Smith, D.E., Zuber, M.T.: High-degree gravity models from GRAIL primary mission data. J. Geophys. Res. 118(8), 1676–1698 (2013) CrossRefGoogle Scholar
  27. Loomis, B.D., Nerem, R.S., Luthcke, S.B.: Simulation study of a follow-on gravity mission to GRACE. J. Geod. 86(5), 319–335 (2012) ADSCrossRefGoogle Scholar
  28. Lorell, J., Born, G.H., Christensen, E.J., Esposito, P.B., Jordan, J.F., Laing, P.A., Sjogren, W.L., Reasenberg, W.D., Shapiro, I.I., Slater, G.L.: Gravity field of Mars from Mariner 9 tracking data. Icarus 18(2), 304–316 (1973) ADSCrossRefGoogle Scholar
  29. Marty, J.C., Balmino, G., Duron, J.: Martian gravity field model and its time variations from MGS and Odyssey data. Planet. Space Sci. 57, 350–363 (2009) ADSCrossRefGoogle Scholar
  30. Park, R.S., Asmar, S.W., Fahnestock, E.G., Konopliv, A.S., Lu, W.W., Watkins, M.M.: Gravity recovery and interior laboratory simulations of static and temporal gravity field. J. Spacecr. Rockets 49(2), 390–400 (2013) ADSCrossRefGoogle Scholar
  31. Reasenberg, R.D., Shapiro, I.I., White, R.D.: The gravity field of Mars. Geophys. Res. Lett. 2(3), 89–92 (1975) ADSCrossRefGoogle Scholar
  32. Sheard, B.S., Heinzel, G., Danzmann, K., Shaddock, D.A., Klipstein, W.M., Folkner, W.M.: Intersatellite laser ranging instrument for the GRACE follow-on mission. J. Geod. 86, 1083–1095 (2012) ADSCrossRefGoogle Scholar
  33. Sjogren, W.L.: The Mars Global Surveyor Gravity Science Team at JPL. (2002)
  34. Sjogren, W.L., Yuan, D.N., Konopliv, A.S.: Recent Mars gravity field modeling. In: JPL Fall Meeting AGU, San Francisco, CA, 6–10 December pp. 6–10 (1998) Google Scholar
  35. Sjogren, W.L., Yuan, D.N., Konopliv, A.S.: Mars gravity field modeling with MGS mapping data. In: Fall Meeting AGUS, San Francisco, CA, 13–17 December pp. 13–17 (1999) Google Scholar
  36. Smith, D.E., Lerch, F.J., Nerem, R.S.: An improved gravity model for Mars: Goddard Mars Model-1 (GMM-1). J. Geophys. Res. 98, 20781–20889 (1993) Google Scholar
  37. Smith, D.E., Zuber, M.T., Haberle, R.M.: The Mars seasonal CO2 cycle and the time variation of the gravity field: a general circulation model simulation. J. Geophys. Res. 104, 1885–1896 (1999) ADSCrossRefGoogle Scholar
  38. Tapley, B.D., Bettadpur, S., Ries, J.C., Thompson, P.F., Watkins, M.M.: GRACE measurements of mass variability in the Earth system. Science 305(5683), 503–505 (2004) ADSCrossRefGoogle Scholar
  39. Tapley, B., Flechtner, S., Bettadpur, S., Watkins, M.M.: The status and future prospect for GRACE after the first decade. Eos Trans., Fall Meet. Suppl., AG22A-01 (2013) Google Scholar
  40. Wang, Z., Wang, N., Ping, J.S.: Research on the lunar ionosphere using dual-frequency radio occultation with a small VLBI antenna. Astrophys. Space Sci. 356(2), 225–230 (2015) ADSCrossRefGoogle Scholar
  41. Wieczorek, M.A., Neumann, G.A., Nimmo, F., Kiefer, W.S., Taylor, G.J., Melosh, H.J., Phillips, R.J., Solomon, S.C., Andrews-Hanna, J.C., Asmar, S.W., Konopliv, A.S., Lemoine, F.G., Smith, D.E., Watkins, M.M., Williams, J.G., Zuber, M.T.: The crust of the Moon as seen by GRAIL. Science 339(6120), 671–675 (2013) ADSCrossRefGoogle Scholar
  42. Yuan, D.N., Sjogren, W.L., Konopliv, A.S., Kucinskas, A.B.: Gravity field of Mars: a 75th degree and order model. J. Geophys. Res. 106, 23377–23401 (2001) ADSCrossRefGoogle Scholar
  43. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J., Zhou, X.H., Peng, B.B.: Efficient and rapid estimation of the accuracy of GRACE global gravitational field using the semi-analytical method. Chin. J. Geophys. 51(6), 1143–1150 (2008) CrossRefGoogle Scholar
  44. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J., Zhou, X.H., Peng, B.B.: Efficient and rapid estimation of the accuracy of future GRACE Follow-On Earth’s gravitational field using the analytic method. Chin. J. Geophys. 53(2), 218–230 (2010) CrossRefGoogle Scholar
  45. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: Efficient calibration of the non-conservative force data from the space-borne accelerometers of the twin GRACE satellites. Trans. Jpn. Soc. Aeronaut. 54(184), 106–110 (2011a) CrossRefGoogle Scholar
  46. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.Y.: Demonstration of requirement on future lunar satellite gravity exploration mission based on interferometric laser inter-satellite ranging principle. J. Astronaut. 32(4), 922–932 (2011b) Google Scholar
  47. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: Progress in international Martian exploration programs and research on future Martian satellite gravity measurement mission in China. J. Geod. Geodyn. 31(3), 51–57 (2011c) Google Scholar
  48. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: Efficient accuracy improvement of GRACE global gravitational field recovery using a new inter-satellite range interpolation method. J. Geodyn. 53, 1–7 (2012a) CrossRefGoogle Scholar
  49. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: Precise recovery of the Earth’s gravitational field with GRACE: intersatellite range-rate interpolation approach. IEEE Trans. Geosci. Remote Sens. 9(3), 422–426 (2012b) CrossRefGoogle Scholar
  50. Zheng, W., Hsu, H.T., Zhong, M., Liu, C.S., Yun, M.J.: Progress in international lunar exploration programs. Prog. Geophys. 27(6), 2296–2307 (2012c) Google Scholar
  51. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: Progress in lunar gravitational field models and operation of future lunar satellite gravity gradiometry mission in China. Sci. Surv. Mapp. 37(2), 5–9 (2012d) Google Scholar
  52. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: Progress in “Yinghuo-1” Martian exploration program and research on Mars-SST satellite gravity measurement mission. Sci. Surv. Mapp. 37(2), 44–48 (2012e) Google Scholar
  53. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: China’s first-phase Mars exploration program: Yinghuo-1 orbiter. Planet. Space Sci. 86, 155–159 (2013) ADSCrossRefGoogle Scholar
  54. Zheng, W., Hsu, H.T., Zhong, M., Liu, C.S., Yun, M.J.: A precise and rapid residual intersatellite range-rate method for satellite gravity recovery from next-generation GRACE Follow-On mission. Chin. J. Geophys. 57(1), 31–41 (2014a) Google Scholar
  55. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: Precise recovery of the Earth’s gravitational field by GRACE Follow-On satellite gravity gradiometer. Chin. J. Geophys. 57(5), 1415–1423 (2014b) Google Scholar
  56. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: Requirements analysis for the future satellite gravity mission Improved-GRACE. Surv. Geophys. 36(1), 87–109 (2015a) ADSCrossRefGoogle Scholar
  57. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: Sensitivity analysis for key payloads and orbital parameters from the next-generation Moon-Gradiometer satellite gravity program. Surv. Geophys. 36(1), 111–137 (2015b) ADSCrossRefGoogle Scholar
  58. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: Improvement in the recovery accuracy of the lunar gravity field based on the future Moon-ILRS spacecraft gravity mission. Surv. Geophys. 36(4), 587–619 (2015c) ADSCrossRefGoogle Scholar
  59. Zheng, W., Hsu, H.T., Zhong, M., Yun, M.J.: Future dedicated Venus-SGG flight mission: accuracy assessment and performance analysis. Adv. Space Res. 57(1), 459–476 (2016) ADSCrossRefGoogle Scholar
  60. Zuber, M.T., Smith, D.E., Watkins, M.M., Asmar, S.W., Konopliv, A.S., Lemoine, F.G., Melosh, H.J., Neumann, G.A., Phillips, R.J., Solomon, S.C., Wieczorek, M.A., Williams, J.G., Goossens, S., Kruizinga, G., Mazarico, E., Park, R.S., Yuan, D.N.: Gravity field of the moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Science 339, 668–671 (2013) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Qian Xuesen Laboratory of Space TechnologyChina Academy of Space TechnologyBeijingChina
  2. 2.State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and GeophysicsChinese Academy of SciencesWuhanChina

Personalised recommendations