Advertisement

Geodesics around oscillatons made of exponential scalar field potential

  • A. Mahmoodzadeh
  • B. Malekolkalami
Original Article

Abstract

Some of the spherically symmetric solutions to the Einstein–Klein–Gordon (EKG) equations can describe the astronomical soliton objects made of a real time-dependent scalar fields. The solutions are known as oscillatons which are non-singular satisfying the flatness conditions asymptotically with periodic (separated) time-dependency. In this paper, we investigate the geodesic motion around an oscillaton. The Spherically Symmetric Geometry allows the bound orbits in the plan \(\theta=\frac{\pi}{2}\) under a given initial conditions. The potential for the scalar field \(\varPhi=\varPhi(r,t)\), is an exponential function of the form \(V(\varPhi)=V_{0}\exp(\lambda\sqrt{k_{0}}\varPhi)\).

Keywords

Einstein–Klein–Gordon equations Metric functions Oscillaton Geodesics 

References

  1. Alcubierre, M., Guzmán, F.S., Matos, T., Núñez, D., Ureña-López, L.A., Wiederhold, P.: Class. Quantum Gravity 20, 5017 (2002) ADSCrossRefGoogle Scholar
  2. Alcubierre, M., et al.: Class. Quantum Gravity 20, 2883 (2003) ADSMathSciNetCrossRefGoogle Scholar
  3. Balakrishna, J., et al.: Phys. Rev. D 77, 024028 (2008) ADSCrossRefGoogle Scholar
  4. Balakrishna, J., Bondarescu, R., Daues, G., Bondarescu, M.: Phys. Rev. D 77, 024028 (2008) ADSCrossRefGoogle Scholar
  5. Becerril, R., Matos, T., Ureña-López, L.A.: Gen. Relativ. Gravit. 38, 633–641 (2006) ADSCrossRefGoogle Scholar
  6. Fodor, G., Forgács, P., Mezei, M.: Phys. Rev. D 82, 044043 (2010) ADSCrossRefGoogle Scholar
  7. Grandclement, P., Fodor, G., Forgacs, P.: Phys. Rev. D 19, 065037 (2011) ADSCrossRefGoogle Scholar
  8. Guzmán, F.S., Ureña-López, L.A.: Phys. Rev. D 68, 024023 (2003) ADSCrossRefGoogle Scholar
  9. Guzmán, F.S., Ureña-López, L.A.: Phys. Rev. D 69, 124033 (2004) ADSCrossRefGoogle Scholar
  10. Liddle, A.: An Introduction to Modern Cosmology, pp. 65–66. Wiley, New York (2003) Google Scholar
  11. Mahmoodzadeh, A., Malekolkalami, B.: Phys. Dark Universe 19, 21–26 (2018) ADSCrossRefGoogle Scholar
  12. Malakolkalami, B., Mahmoodzadeh, A.: Phys. Rev. D 94, 103505 (2016) ADSCrossRefGoogle Scholar
  13. Matos, T., Guzmán, F.S.: Class. Quantum Gravity 18, 5055 (2001a) ADSCrossRefGoogle Scholar
  14. Matos, T., Guzmán, F.S.: arXiv:gr-qc/0108027 (2001b)
  15. Matos, T., Ureña-López, L.A.: Phys. Rev. D 63, 063506 (2001) ADSCrossRefGoogle Scholar
  16. Matos, T., et al.: Lect. Notes Phys. 646, 401–420 (2004) ADSCrossRefGoogle Scholar
  17. Matos, T., Vázquez-González, A., Magaña, J.: Mon. Not. R. Astron. Soc. 393, 1359 (2009) ADSCrossRefGoogle Scholar
  18. Matos, T., Guzmán, F.S., Ureña-López, L.A., Núñez, D.:. arXiv:astro-ph/0102419
  19. Mielke, E.W., Schunck, F.E.: Phys. Rev. D 66, 023503 (2002) ADSCrossRefGoogle Scholar
  20. Saidel, E., Suen, W.-M.: Phys. Rev. Lett. 66, 1659 (1991) ADSCrossRefGoogle Scholar
  21. Saidel, E., Suen, W.-M.: Phys. Rev. Lett. 72, 2516 (1994) ADSCrossRefGoogle Scholar
  22. Suaŕez, A.: J. Cienc. Ing. 4(1), 1–8 (2012) Google Scholar
  23. Ureña-López, L.A.: Class. Quantum Gravity 19, 2617 (2002) ADSCrossRefGoogle Scholar
  24. Ureña-López, L.A., Matos, T., Becerril, R.: Class. Quantum Gravity 19, 6259 (2002) ADSCrossRefGoogle Scholar
  25. Ureña-López, L.A., Alvadro-Valdez, S., Becerril, R.: Class. Quantum Gravity 29, 065021 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Physics, Boukan BranchIslamic Azad UniversityBoukanIran
  2. 2.Faculty of ScienceUniversity of KurdistanSanandajIran

Personalised recommendations