Advertisement

Collisional Penrose process and jets in Kerr naked singularity

  • Sajal Mukherjee
  • Rajesh Kumble Nayak
Original Article

Abstract

In this article, we investigate the possibilities of energy extraction from an over-spinning Kerr spacetime using collisional Penrose process. This phenomenon can produce a high-energy ejecta of particles under certain favourable conditions. Unlike black holes, in this case, the particles endowed with higher energy can escape to infinity. We use this model to explore various possibilities of jet formation in an over-spinning geometry. Primarily we concentrate on the energy extraction associated with collisions taking place on the off-equatorial planes and find the signature of jets from them. We also apply this formalism to a toy model which could be useful in practical astrophysical scenarios. This is motivated from the atomic model where we have considered the decay of a circular orbit because of energy extraction via Penrose mechanism.

Keywords

Collisional Penrose process Kerr naked singularity Jets formation 

Notes

Acknowledgements

The authors are thankful to the Visiting Associateship programme of Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune. A part of this work was carried out during the visit to IUCAA under this programme. Finally, the authors wish to thank the anonymous referee for some useful comments and suggestions to improve the manuscript.

References

  1. Banados, M., Silk, J., West, S.M.: Phys. Rev. Lett. 103, 111102 (2009) ADSCrossRefGoogle Scholar
  2. Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Astrophys. J. 178, 347 (1972) ADSCrossRefGoogle Scholar
  3. Bejger, M., Piran, T., Abramowicz, M., Hakanson, F.: Phys. Rev. Lett. 109, 121101 (2012) ADSCrossRefGoogle Scholar
  4. Bhattacharya, S.: Phys. Rev. D 97, 084049 (2018) ADSCrossRefGoogle Scholar
  5. Blandford, R.D., Znajek, R.L.: Mon. Not. R. Astron. Soc. 179, 433 (1977) ADSCrossRefGoogle Scholar
  6. Carter, B.: Black hole equilibrium states. In: Black Holes (les astres occlus). Gordon & Breach, New York (1973) Google Scholar
  7. Chandrasekhar, S.: The Mathematical Theory of Black Holes. International Series of Monographs on Physics, vol. 69. Oxford University Press, London (1998) zbMATHGoogle Scholar
  8. de Felice, F.: Astron. Astrophys. 34, 15 (1974) ADSGoogle Scholar
  9. de Felice, F., Calvani, M.: Nuovo Cimento B 10, 447–458 (1972) ADSGoogle Scholar
  10. Gariel, J., MacCallum, M., Marcilhacy, G., Santos, N.: Astron. Astrophys. 515, A15 (2010) ADSCrossRefGoogle Scholar
  11. Harada, T., Kimura, M.: Phys. Rev. D 83, 024002 (2011) ADSCrossRefGoogle Scholar
  12. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time, Vol. 1. Cambridge University Press, Cambridge (1973) CrossRefzbMATHGoogle Scholar
  13. Kerr, R.P.: Phys. Rev. Lett. 11, 237–238 (1963) ADSMathSciNetCrossRefGoogle Scholar
  14. Krolik, J.H.: Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment. Princeton University Press, Princeton (1999) Google Scholar
  15. Leiderschneider, E., Piran, T.: Phys. Rev. D 93, 043015 (2016) ADSMathSciNetCrossRefGoogle Scholar
  16. McWilliams, S.T.: Phys. Rev. Lett. 110, 011102 (2013) ADSCrossRefGoogle Scholar
  17. Narayan, R., McClintock, J.E., Tchekhovskoy, A.: General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol. 177, pp. 523–535. Springer, Berlin (2014) Google Scholar
  18. O’Neil, B.: The Geometry of Kerr Black Holes. AK Peters, Wellesley (1995) Google Scholar
  19. Patil, M., Joshi, P.S.: Class. Quantum Gravity 28, 235012 (2011) ADSCrossRefGoogle Scholar
  20. Patil, M., Joshi, P.S.: Pramana 84, 491–501 (2015) ADSCrossRefGoogle Scholar
  21. Patil, M., Harada, T., Nakao, K., Joshi, P.S., Kimura, M.: Phys. Rev. D 93, 104015 (2016) ADSCrossRefGoogle Scholar
  22. Penrose, R.: J. Astrophys. Astron. 20, 233–248 (1971) ADSCrossRefGoogle Scholar
  23. Penrose, R., Floyd, R.: Nature 229, 177–179 (1971) ADSGoogle Scholar
  24. Piran, T., Shaham, J.: Phys. Rev. D 16, 1615–1635 (1977) ADSCrossRefGoogle Scholar
  25. Piran, T., Shaham, J., Katz, J.: Astrophys. J. 196, L107 (1975) ADSCrossRefGoogle Scholar
  26. Piran, T., Kumar, P., Panaitescu, A., Piro, L.: Astrophys. J. 560, L167 (2001) ADSCrossRefGoogle Scholar
  27. Punsly, B.: Black Hole Gravitohydromagnetics. Springer, Berlin/Heidelberg (2001) CrossRefzbMATHGoogle Scholar
  28. Sauty, C., Tsinganos, K., Trussoni, E.: arXiv:astro-ph/0108509 (2002)
  29. Semenov, V.S., Dyadechkin, S.A., Heyn, M.F.: Phys. Scr. 89, 045003 (2014) ADSCrossRefGoogle Scholar
  30. Tanatarov, I.V., Zaslavskii, O.B.: Gen. Relativ. Gravit. 49, 119 (2017) ADSCrossRefGoogle Scholar
  31. Zaslavskii, O.B.: Class. Quantum Gravity 29, 205004 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Physical SciencesIISER-KolkataMohanpurIndia
  2. 2.Center of Excellence in Space Sciences IndiaIISER-KolkataMohanpurIndia

Personalised recommendations