Advertisement

Nonlinear model to study filamentation instability of circularly polarized dispersive Alfvén waves in solar wind plasmas

  • Swati Sharma
  • R. P. Sharma
  • M. K. Mishra
Original Article
  • 73 Downloads

Abstract

This paper examines the small-scale solar wind turbulence driven in view of the Alfvén waves subjected to ponderomotive nonlinearity. Filamentation instability is known to take place for the case of dispersive Alfvén wave (DAW) propagating parallel to the ambient magnetic field. The ponderomotive force associated with DAW is responsible for wave localization and these webs of filaments become more intense and irregular as one proceeds along the spatial domain. The ponderomotive force associated with pump changes with pump parameters giving rise to different evolution patterns. This paper studies in detail the nonlinear evolution of filamentation instability introduced by dispersive Alfven waves (DAWs) which becomes dispersive on account of the finite frequency of DAW i.e., pump frequency is comparable to the ion cyclotron frequency. We have explicitly obtained the perturbation dynamics and then examined the impact of pump magnitude on the driven magnetic turbulence using numerical simulation. The results show steepening at small scales with increasing pump amplitude. The compressibility associated with acoustic fluctuations may explain the variation in spectral scaling of solar wind turbulence as observed by Alexandrova et al. (Astrophys. J. 674:1157, 2008).

Keywords

Nonlinear phenomena Turbulence Solar wind Dispersive Alfvén wave 

Notes

Acknowledgements

This work is supported by Scientific Engineering Research Board (SERB), India, grant number PDF/2016/004070. Department of Science and Technology (DST), ISRO.

References

  1. Alexandrova, O., Carbone, V., Veltri, P., Sorriso-Valvo, L.: Astrophys. J. 674, 1157 (2008) CrossRefGoogle Scholar
  2. Belcher, J.W., Davis, L.: J. Geophys. Res. 76, 3534 (1971) ADSCrossRefGoogle Scholar
  3. Brodin, G., Stenflo, L.: J. Plasma Phys. 42, 187 (1989) ADSCrossRefGoogle Scholar
  4. Champeaux, S., Passot, T., Sulem, P.L.: J. Plasma Phys. 58, 665 (1997) ADSCrossRefGoogle Scholar
  5. Champeaux, S., Gazol, A., Passot, T., Sulem, P.L.: In: Passot, T., Sulem, P.-L. (eds.) Lecture Notes in Physics, vol. 536, p. 54 (1999) Google Scholar
  6. Eastwood, J.P., Phan, T.D., Bale, S.D., Tjulin, A.: Phys. Rev. Lett. 102, 035001 (2009) ADSCrossRefGoogle Scholar
  7. Fermi, E., Pasta, J., Ulam, S.: In: Segre, E. (ed.) Collected Papers of Enrico Fermi, vol. 2, p. 978. University of Chicago, Chicago (1965) Google Scholar
  8. Galtier, S., Buchlin, E.: Astrophys. J. 656, 560 (2007) ADSCrossRefGoogle Scholar
  9. Ghosh, S., Siregar, E., Roberts, D.A., Goldstein, M.L.: J. Geophys. Res. 101, 2493 (1996) ADSCrossRefGoogle Scholar
  10. Goldstein, M.L., Roberts, D.A., Matthaeus, W.H.: Annu. Rev. Astron. Astrophys. 33, 283 (1995) ADSCrossRefGoogle Scholar
  11. Hada, T.: Geophys. Res. Lett. 20, 22 (1993) Google Scholar
  12. He, J., Marsch, E., Tu, C., Yao, S., Tian, H.: Astrophys. J. 731, 85 (2011) ADSCrossRefGoogle Scholar
  13. Infeld, E.: Phys. Rev. Lett. 47, 717 (1981) ADSMathSciNetCrossRefGoogle Scholar
  14. Jokipii, J.R.: Annu. Rev. Astron. Astrophys. 11, 1 (1973) ADSCrossRefGoogle Scholar
  15. Krishan, V., Mahajan, S.M.: J. Geophys. Res. 109, A11105 (2004) ADSCrossRefGoogle Scholar
  16. Laveder, D., Passot, T., Sulem, P.L.: Phys. Plasmas 9, 293 (2002) ADSMathSciNetCrossRefGoogle Scholar
  17. Marsch, E.: Space Sci. Rev. 87, 1 (1999) ADSCrossRefGoogle Scholar
  18. Marsch, E.: Living Rev. Sol. Phys. 3, 1 (2006) ADSCrossRefGoogle Scholar
  19. Matthaeus, W.H., Goldstein, M.L.: J. Geophys. Res. 87, 6011 (1982) ADSCrossRefGoogle Scholar
  20. Meyrand, R., Galtier, S.: Phys. Rev. Lett. 109, 194501 (2012) ADSCrossRefGoogle Scholar
  21. Mishin, E.V., Forster, M.: Geophys. Res. Lett. 22, 1745 (1995) ADSCrossRefGoogle Scholar
  22. Moon, H.T.: Phys. Rev. Lett. 64, 412 (1990) ADSCrossRefGoogle Scholar
  23. Passot, T., Sulem, P.L.: Phys. Rev. E 48, 2966 (1993) ADSMathSciNetCrossRefGoogle Scholar
  24. Sagdeev, R.Z., Galeev, A.A.: Nonlinear Plasma Theory. Benjamin, Newyork (1969) zbMATHGoogle Scholar
  25. Sahraoui, F., Goldstein, M.L., Robert, P., Khotyaintsev, Y.V.: Phys. Rev. Lett. 102, 231102 (2009) ADSCrossRefGoogle Scholar
  26. Sharma, S., Sharma, R.P., Gaur, N.: J. Geophys. Res. 119, 1435–1441 (2014) CrossRefGoogle Scholar
  27. Shevchenko, V.I., Galinsky, V.L., Ride, S.K., Baine, M.: Geophys. Res. Lett. 22, 2997 (1995) ADSCrossRefGoogle Scholar
  28. Shukla, P.K., Dawson, J.M.: Astrophys. J. 276, L49 (1984) ADSCrossRefGoogle Scholar
  29. Shukla, P.K., Stenflo, L.: Phys. Fluids 28, 1576 (1985) ADSCrossRefGoogle Scholar
  30. Smith, C.W., Hamilton, K., Vasquez, B.J., Leamon, R.J.: Astrophys. J. Lett. 645, L85 (2006) ADSCrossRefGoogle Scholar
  31. Song, Y., Lysak, R.L.: Geophys. Res. Lett. 16 (1989) Google Scholar
  32. Sonnerup, B.U.O., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S.J., Asbridge, J.R., Gosling, J.T., Russell, C.T.: J. Geophys. Res. 86, 10049 (1981).  https://doi.org/10.1029/JA086iA12p10049 ADSCrossRefGoogle Scholar
  33. Stenflo, L., Yu, M.Y., Shukla, P.K.: Planet. Space Sci. 36, 499 (1988) ADSCrossRefGoogle Scholar
  34. Stix, T.H.: Waves in Plasmas p. 33. AIP, New York (1992) Google Scholar
  35. Weissman, P.R., McFadden, L.A., Johnson, T.V.: The Encyclopedia of the Solar System. Academic Press, New York (1999) Google Scholar
  36. Yuen, H.C., Fergunson, W.E.: Phys. Fluids 21, 1275 (1978) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of RajasthanJaipurIndia
  2. 2.Centre for Energy StudiesIndian Institute of TechnologyDelhiIndia

Personalised recommendations