Advertisement

Cosmic strings in a five dimensional spherically symmetric background in \(f(R,T)\) gravity

  • K. Dasunaidu
  • Y. Aditya
  • D. R. K. Reddy
Original Article
  • 68 Downloads

Abstract

We study the physical behavior of a five dimensional non-static spherically symmetric cosmological models in the presence of massive strings in the framework of \(f(R,T)\) gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). Here \(R\) is the Ricci scalar and \(T\) is the trace of the stress energy tensor and the fifth dimension is not observed because it is compact. We solve the field equations (i) using a relation between the scale factors given by Samantha and Dhal (Int. J. Theor. Phys. 52:1334, 2013) and (ii) equations of state for string models. The models obtained correspond to \(p\)-string, geometric string and massive string models in this modified theory in five dimensions. Cosmological parameters of the models are determined and their dynamical properties are discussed.

Keywords

Five dimensional universe \(f(R,T)\) Gravity Cosmic strings Cosmological model 

Notes

Acknowledgements

The authors are very much grateful to the reviewer for their constructive comments which certainly improved the quality and presentation of the paper.

Compliance with ethical standards

The authors declare that they have no potential conflict and will abide by the ethical standards of this journal.

References

  1. Aditya, Y., et al.: Astrophys. Space Sci. 361, 56 (2016) ADSMathSciNetCrossRefGoogle Scholar
  2. Bento, M., et al.: Phys. Rev. D 66, 043507 (2003) ADSMathSciNetCrossRefGoogle Scholar
  3. Berman, M.S.: Nuovo Cimento B 74, 182 (1983) ADSCrossRefGoogle Scholar
  4. Biswal, A.K., et al.: Astrophys. Space Sci. 359, 42 (2015) ADSCrossRefGoogle Scholar
  5. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961) ADSMathSciNetCrossRefGoogle Scholar
  6. Cunha, J.V.: Phys. Rev. D 79, 047301 (2009) ADSCrossRefGoogle Scholar
  7. Harko, T., et al.: Phys. Rev. D 84, 024020 (2011) ADSCrossRefGoogle Scholar
  8. Husain, V., Winkler, O.: Phys. Rev. D 75, 24014 (2007) ADSMathSciNetCrossRefGoogle Scholar
  9. Kanakavalli, T., Rao, G.A.: Astrophys. Space Sci. 361, 206 (2016) ADSCrossRefGoogle Scholar
  10. Kanakavalli, T., et al.: Astrophys. Space Sci. 362, 21 (2017) ADSMathSciNetCrossRefGoogle Scholar
  11. Katore, S.D., Hatkar, S.P.: Prog. Theor. Exp. Phys. 2016, 033E01 (2016) CrossRefGoogle Scholar
  12. Letelier, P.S.: Phys. Rev. D 28, 2414 (1983) ADSMathSciNetCrossRefGoogle Scholar
  13. Naidu, R.L., et al.: Astrophys. Space Sci. 348, 247 (2013) ADSCrossRefGoogle Scholar
  14. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  15. Rajabi, F., Nozari, K.: Phys. Rev. D 96, 084061 (2017). arXiv:1710.01910 ADSCrossRefGoogle Scholar
  16. Rao, V.U.M., Jayasudha, V.: Astrophys. Space Sci. 358, 8 (2015a) ADSCrossRefGoogle Scholar
  17. Rao, V.U.M., Jayasudha, V.: Astrophys. Space Sci. 358, 29 (2015b) ADSCrossRefGoogle Scholar
  18. Rao, V.U.M., Rao, D.Ch.P.: Astrophys. Space Sci. 357, 77 (2015) ADSCrossRefGoogle Scholar
  19. Rao, V.U.M., et al.: Prespacetime J. 6(10), 947 (2015) Google Scholar
  20. Reddy, D.R.K.: Astrophys. Space Sci. 286, 365 (2003) ADSCrossRefGoogle Scholar
  21. Reddy, D.R.K., Rao, M.V.S.: Astrophys. Space Sci. 302, 157 (2006a) ADSCrossRefGoogle Scholar
  22. Reddy, D.R.K., Rao, M.V.S.: Astrophys. Space Sci. 305, 183 (2006b) ADSCrossRefGoogle Scholar
  23. Riess, A., et al.: Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  24. Saez, D., Ballester, V.J.: Phys. Lett. A 113, 467 (1986) ADSCrossRefGoogle Scholar
  25. Sahoo, P.K., et al.: Eur. Phys. J. Plus 131, 333 (2016) ADSCrossRefGoogle Scholar
  26. Samanta, G.C., Dhal, S.N.: Int. J. Theor. Phys. 52, 1334 (2013) CrossRefGoogle Scholar
  27. Santhi, M.V., et al.: Can. J. Phys. 95, 136 (2017) ADSCrossRefGoogle Scholar
  28. Spergel, S., et al.: Astrophys. J. 148, 175 (2003) CrossRefGoogle Scholar
  29. Spergel, S., et al.: Astrophys. J. 170, 377 (2007) CrossRefGoogle Scholar
  30. Takabyasi, T.: Quantum Mechanics Determinism, Causality and Particles. Springer, Berlin (1976) Google Scholar
  31. Tegmark, M., et al.: Phys. Rev. D 69, 103501 (2004) ADSCrossRefGoogle Scholar
  32. Tiwari, R.K., et al.: Gravit. Cosmol. 23, 392 (2017) ADSMathSciNetCrossRefGoogle Scholar
  33. Wesson, P.S.: Astron. Astrophys. 119, 1 (1983) Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of MathematicsGMR Institute of TechnologyRajamIndia
  2. 2.Department of Applied MathematicsAndhra UniversityVisakhapatnamIndia
  3. 3.Advanced Analytical LaboratoryAndhra UniversityVisakhapatnamIndia

Personalised recommendations