Advertisement

The extreme initial kinetic energy allowed by a collapsing turbulent core

  • Guillermo Arreaga-García
Original Article

Abstract

We present high-resolution hydrodynamical simulations aimed at following the gravitational collapse of a gas core, in which a turbulent spectrum of velocity is implemented only initially. We determine the maximal value of the ratio of kinetic energy to gravitational energy, denoted here by \((\frac{E_{\mathrm{kin}} }{E_{\mathrm{grav}}} )_{\max}\), so that the core (i) will collapse around one free-fall time of time evolution or (ii) will expand unboundedly, because it has a value of \(\frac{E_{\rm kin}}{E_{\mathrm{grav}}}\) larger than \(( \frac{E_{\mathrm{kin}}}{E_{\mathrm{grav}}} )_{\mathrm{max}}\). We consider core models with a uniform or centrally condensed density profile and with velocity spectra composed of a linear combination of one-half divergence-free turbulence type and the other half of a curl-free turbulence type. We show that the outcome of the core collapse are protostars forming either (i) a multiple system obtained from the fragmentation of filaments and (ii) a single primary system within a long filament. In addition, some properties of these protostars are also determined and compared with those obtained elsewhere.

Keywords

Stars: formation Physical processes: gravitational collapse, hydrodynamics Methods: numerical 

Notes

Acknowledgements

The author thankfully acknowledge the computer resources, technical expertise and support provided by the Laboratorio Nacional de Supercómputo del Sureste de México through the grant number O-2016/047.

References

  1. Arreaga, G., Klapp, J., Sigalotti, L.D., Gabbasov, R.: Astrophys. J. 666, 290 (2007) ADSCrossRefGoogle Scholar
  2. Arreaga, G., Klapp, J., Gomez, F.: Astron. Astrophys. 509, A96–A111 (2009) CrossRefGoogle Scholar
  3. Arreaga-García, G.: Rev. Mex. Astron. Astrofís. 52, 155–169 (2016) ADSGoogle Scholar
  4. Arreaga-García, G.: Astrophys. Space Sci. 362, 47 (2017a) ADSCrossRefGoogle Scholar
  5. Arreaga-García, G.: Rev. Mex. Astron. Astrofís. 53, 1–24 (2017b) Google Scholar
  6. Arreaga-García, G., Saucedo-Morales, J.C.: Rev. Mex. Astron. Astrofís. 48, 61–84 (2012) ADSGoogle Scholar
  7. Attwood, R.E., Goodwin, S.P., Stamatellos, D., Whitworth, A.P.: Astron. Astrophys. 495, 201–215 (2009) ADSCrossRefGoogle Scholar
  8. Balsara, D.: J. Comput. Phys. 121, 357 (1995) ADSCrossRefGoogle Scholar
  9. Bate, M.R., Burkert, A.: Mon. Not. R. Astron. Soc. 288, 1060 (1997) ADSCrossRefGoogle Scholar
  10. Bate, M.R., Bonnell, I.A., Price, N.M.: Mon. Not. R. Astron. Soc. 277, 362–376 (1995) ADSCrossRefGoogle Scholar
  11. Bate, M.R., Bonnell, I.A., Bromm, V.: Mon. Not. R. Astron. Soc. 332, L65–L68 (2002a) ADSCrossRefGoogle Scholar
  12. Bate, M.R., Bonnell, I.A., Bromm, V.: Mon. Not. R. Astron. Soc. 336, 705–713 (2002b) ADSCrossRefGoogle Scholar
  13. Bate, M.R., Bonnell, I.A., Bromm, V.: Mon. Not. R. Astron. Soc. 339, 577–599 (2003) ADSCrossRefGoogle Scholar
  14. Bergin, E., Tafalla, M.: Annu. Rev. Astron. Astrophys. 45, 339 (2007) ADSCrossRefGoogle Scholar
  15. Bonazzola, S., Falgorone, E., Heyvaerts, J., Pérault, M., Puget, J.L.: Astron. Astrophys. 172, 293 (1987) ADSGoogle Scholar
  16. Boss, A.P.: Nature 351, 298 (1991) ADSCrossRefGoogle Scholar
  17. Boss, A.P., Bodenheimer, P.: Astrophys. J. 234, 289 (1979) ADSCrossRefGoogle Scholar
  18. Boss, A.P., Fisher, R.T., Klein, R., McKee, C.F.: Astrophys. J. 528, 325 (2000) ADSCrossRefGoogle Scholar
  19. Brunt, C.M., Federrath, C.: Mon. Not. R. Astron. Soc. 442, 1451 (2014) ADSCrossRefGoogle Scholar
  20. Caselli, P., Benson, P.J., Myers, P.C., Tafalla, M.: Astrophys. J. 572, 238 (2002) ADSCrossRefGoogle Scholar
  21. Dobbs, C.L., Bonnell, I.A., Clark, P.C.: Mon. Not. R. Astron. Soc. 360, 2–8 (2005) ADSCrossRefGoogle Scholar
  22. Federrath, C.: Mon. Not. R. Astron. Soc. 450(4), 4035–4042 (2015) ADSCrossRefGoogle Scholar
  23. Federrath, C., Klessen, R.S.: Astrophys. J. 761(2), 156 (2012) ADSCrossRefGoogle Scholar
  24. Federrath, C., Roman-Duval, J., Klessen, R.S., Schmidt, W., Mac Low, M.M.: Astron. Astrophys. 512, A81 (2010a) ADSCrossRefGoogle Scholar
  25. Federrath, C., Banerjee, R., Clark, P.C., Klessen, R.S.: Astrophys. J. 713(1), 269–290 (2010b) ADSCrossRefGoogle Scholar
  26. Girichidis, P., Federrath, C., Banerjee, R., Klessen, R.S.: Mon. Not. R. Astron. Soc. 413(4), 2741–2759 (2011) ADSCrossRefGoogle Scholar
  27. Goodwin, S.P., Whitworth, A.P., Ward-Thompson, D.: Astron. Astrophys. 414, 633–650 (2004a) ADSCrossRefGoogle Scholar
  28. Goodwin, S.P., Whitworth, A.P., Ward-Thompson, D.: Astron. Astrophys. 423, 169–182 (2004b) ADSCrossRefGoogle Scholar
  29. Goodwin, S.P., Whitworth, A.P., Ward-Thompson, D.: Astron. Astrophys. 452, 487–492 (2006) ADSCrossRefGoogle Scholar
  30. Hachisu, I., Heriguchi, Y.: Astron. Astrophys. 140, 259 (1984) ADSGoogle Scholar
  31. Hachisu, I., Heriguchi, Y.: Astron. Astrophys. 143, 355 (1985) ADSGoogle Scholar
  32. Hopkins, F.: Mon. Not. R. Astron. Soc. 430, 1653–1693 (2013) ADSCrossRefGoogle Scholar
  33. Jijina, J., Myers, P.C., Adams, F.C.: Astrophys. J. 125, 161–236 (1999) ADSCrossRefGoogle Scholar
  34. Kitsionas, S., Whitworth, A.P.: Mon. Not. R. Astron. Soc. 330, 129 (2002) ADSCrossRefGoogle Scholar
  35. Klein, R.I., Fisher, R.T., McKee, C.F., Truelove, J.K.: In: Miyama, S., Tomisaka, K., Hanawa, T. (eds.) Numerical Astrophysics 1998, p. 131. Kluwer, Dordrecht (1999) CrossRefGoogle Scholar
  36. Lomax, O., Whitworth, A.P., Hubber, D.A.: Mon. Not. R. Astron. Soc. 449, 662–669 (2015) ADSCrossRefGoogle Scholar
  37. Miyama, S.M., Hayashi, C., Narita, S.: Astrophys. J. 279, 621 (1984) ADSCrossRefGoogle Scholar
  38. Monaghan, J.J., Gingold, R.A.: J. Comput. Phys. 52, 374 (1983) ADSCrossRefGoogle Scholar
  39. Padoan, P., Nordlund, A.: Astrophys. J. 576, 870–879 (2002) ADSCrossRefGoogle Scholar
  40. Padoan, P., Federrath, C., Chabrier, G., Evans, N.J. II, Johnstone, D., Joørgensen, J.K., McKee, C.F., Nordlund, E.: In: Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T. (eds.): Protostars and Planets VI, pp. 77–100. University of Arizona Press, Tucson (2014). arXiv:1312.5365 Google Scholar
  41. Plummer, H.C.: Mon. Not. R. Astron. Soc. 71, 460 (1911) ADSCrossRefGoogle Scholar
  42. Price, D.: Proc. Astron. Soc. Aust. 24(3), 159–173 (2007). The code SPLASH was taken from http://users.monash.edu.au/~dprice/splash/, SPLASH: a free and open source visualisation tool for Smoothed Particle Hydrodynamics (SPH) simulations, 2015 ADSCrossRefGoogle Scholar
  43. Sasao, T.: Publ. Astron. Soc. Jpn. 25, 1 (1973) ADSGoogle Scholar
  44. Springel, V.: Mon. Not. R. Astron. Soc. 364, 1105 (2005) ADSCrossRefGoogle Scholar
  45. Springel, V., Yoshida, N., White, S.D.M.: New Astron. 6, 79 (2001) ADSCrossRefGoogle Scholar
  46. Truelove, J.K., Klein, R.I., McKee, C.F., Holliman, J.H., Howell, L.H., Greenough, J.A.: Astrophys. J. 489, L179 (1997) ADSCrossRefGoogle Scholar
  47. Truelove, J.K., Klein, R.I., McKee, C.F., Holliman, J.H., Howell, L.H., Greenough, J.A., Woods, D.T.: Astrophys. J. 495, 821 (1998) ADSCrossRefGoogle Scholar
  48. Walch, S., Whitworth, A.P., Girichidis, P.: Mon. Not. R. Astron. Soc. 419, 760–770 (2012) ADSCrossRefGoogle Scholar
  49. Whitworth, A.P., Ward-Thompson, D.: Astrophys. J. 54, 317 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Investigación en FísicaUniversidad de SonoraHermosilloMexico

Personalised recommendations