Advertisement

Analytical study of the powered Swing-By maneuver for elliptical systems and analysis of its efficiency

  • Alessandra F. S. Ferreira
  • Antônio F. B. A. Prado
  • Othon C. Winter
  • Denilson P. S. Santos
Original Article
  • 55 Downloads

Abstract

Analytical equations describing the velocity and energy variation of a spacecraft in a Powered Swing-By maneuver in an elliptic system are presented. The spacecraft motion is limited to the orbital plane of the primaries. In addition to gravity, the spacecraft suffers the effect of an impulsive maneuver applied when it passes by the periapsis of its orbit around the secondary body of the system. This impulsive maneuver is defined by its magnitude \(\delta V\) and the angle that defines the direction of the impulse with respect to the velocity of the spacecraft (\(\alpha\)). The maneuver occurs in a system of main bodies that are in elliptical orbits, where the velocity of the secondary body varies according to its position in the orbit following the rules of an elliptical orbit. The equations are dependent on this velocity. The study is done using the “patched-conics approximation”, which is a method of simplifying the calculations of the trajectory of a spacecraft traveling around more than one celestial body. Solutions for the velocity and energy variations as a function of the parameters that define the maneuver are presented. An analysis of the efficiency of the powered Swing-By maneuver is also made, comparing it with the pure gravity Swing-by maneuver with the addition of an impulse applied outside the sphere of influence of the secondary body. After a general study, the techniques developed here are applied to the systems Sun-Mercury and Sun-Mars, which are real and important systems with large eccentricity. This problem is highly nonlinear and the dynamics very complex, but very reach in applications.

Keywords

Astrodynamics Powered Swing-By maneuvers Spacecraft trajectories Elliptical systems Impulsive maneuver 

Notes

Acknowledgements

The authors wish to express their appreciation for the support provided by grants # 406841/2016-0, 301338/2016-7 and 312813/2013-9 from the National Council for Scientific and Technological Development (CNPq); grants #2016/14665-2, 2016/24561-0, 2016/23542-1, and 2017/04643-4 from São Paulo Research Foundation (FAPESP) and the financial support from the National Council for the Improvement of Higher Education (CAPES).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Araujo, R.A.N., Winter, O.C., Prado, A.F.B.A., Vieira Martins, R.: Sphere of influence and gravitational capture radius: a dynamical approach. Mon. Not. R. Astron. Soc. 391(2), 675–684 (2008) CrossRefADSGoogle Scholar
  2. Barger, V., Olsson, M.: Classical Mechanics: A Modern Perspective. McGraw-Hill, New York (1973) MATHGoogle Scholar
  3. Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics, pp. 333–334. Dover, New York (1971) Google Scholar
  4. Broucke, R.A.: The celestial mechanics of gravity assist. In: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, August (1988).  https://doi.org/10.2514/6.1988-4220. AIAA paper 88-4220 Google Scholar
  5. Byrnes, D.V., D’Amario, L.A.: A combined Halley flyby Galileo mission. In: AIAA/AAS Astrodynamics Conference, vol. 82 (1982).  https://doi.org/10.2514/6.1982-1462 Google Scholar
  6. Casalino, L., Colasurdo, G., Pastrone, D.: Simple strategy for powered Swing-By. J. Guid. Control Dyn. 22(1), 156–159 (1999a) CrossRefADSGoogle Scholar
  7. Casalino, L., Colasurdo, G., Pasttrone, D.: Optimal low-thrust scape trajectories using gravity assist. J. Guid. Control Dyn. 22(5), 637–642 (1999b) CrossRefADSGoogle Scholar
  8. D’Amario, L.A., Byrnes, D.V., Stanford, R.H.: A new method for optimizing multiple-flyby trajectories. J. Guid. Control Dyn. 4, 591 (1981).  https://doi.org/10.2514/3.56115 CrossRefADSGoogle Scholar
  9. D’Amario, L.A., Byrnes, D.V., Stanford, R.H.: Interplanetary trajectory optimization with application to Galileo. J. Guid. Control Dyn. 5, 465 (1982).  https://doi.org/10.2514/3.56194 CrossRefADSGoogle Scholar
  10. Dunne, J.A., Burgess, E.: The Voyage of Mariner 10. NASA SP 424 (1978) Google Scholar
  11. Ferreira, A.F.S., Prado, A.F.B.A., Winter, O.C.: A numerical study of powered Swing-Bys around the Moon. Adv. Space Res. 56, 252–272 (2015).  https://doi.org/10.1016/j.asr.2015.04.016 CrossRefADSGoogle Scholar
  12. Ferreira, A.F., Prado, A.F.B.A., Winter, O.C., Santos, D.P.S.: Effects of the eccentricity of the primaries in a powered Swing-By maneuver. Adv. Space Res. 59(8), 2071–2087 (2017a).  https://doi.org/10.1016/j.asr.2017.01.033 CrossRefADSGoogle Scholar
  13. Ferreira, A.F., Prado, A.F.B.A., Winter, O.C.: A numerical mapping of energy gains in a powered Swing-By maneuver. Nonlinear Dyn. 89(2), 791–818 (2017b).  https://doi.org/10.1007/s11071-017-3485-2 CrossRefGoogle Scholar
  14. Ferreira, A.F., Prado, A.F.B.A., Winter, O.C., Santos, D.P.S.: Studying the energy variation in the powered Swing-By in the Sun-Mercury system. J. Phys. Conf. Ser. 911, 012007 (2017c) CrossRefGoogle Scholar
  15. Ferreira, A.F.S., Prado, A.F.B.A., Winter, O.C.: Analytical study of the Swing-By maneuver in an elliptical system. Astrophys. Space Sci. 363(2), 24 (2018) MathSciNetCrossRefADSGoogle Scholar
  16. Flandro, G.: Fast reconnaissance missions to the outer solar system utilizing energy derived from the gravitational field of Jupiter. Acta Astronaut. 12(4), 329 (1966) Google Scholar
  17. Gomes, V.M., Prado, A.F.B.A.: Swing-By maneuvers for a cloud of particles with planets of the Solar System. WSEAS Trans. Appl. Theor. Mech. 3(11), 869–878 (2008) Google Scholar
  18. Grard, R.: Mercury: the Messenger and BepiColombo missions a concerted approach to the exploration of the planet. Adv. Space Res. 38, 563 (2006).  https://doi.org/10.1016/j.asr.2006.06.015 CrossRefADSGoogle Scholar
  19. McConaghy, T.T., Debban, T.J., Petropoulos, A.E., Longuski, J.M.: Design and optimization of low-thrust gravity trajectories with gravity assist. J. Spacecr. Rockets 40, 380–387 (2003) CrossRefADSGoogle Scholar
  20. McNutt, R.L. Jr., Solomon, S.C., Grard, R., Novara, M., Mukai, T.: An international program for Mercury exploration: synergy of Messenger and Bepicolombo. Adv. Space Res. 33, 2126 (2004).  https://doi.org/10.1016/S0273-1177(03)00439-3 CrossRefADSGoogle Scholar
  21. McNutt, R.L. Jr., Solomon, S.C., Gold, R.E., Leary, J.C.: The messenger mission to Mercury: development history and early mission status. Adv. Space Res. 38, 564 (2006).  https://doi.org/10.1016/j.asr.2005.05.044 CrossRefADSGoogle Scholar
  22. NASA. LCROSS—Lunar Crater Observation and Sensing Satellite—LCROSS Overview. Page Editor: Robert Garner (2009). Available in: https://www.nasa.gov/mission_pages/LCROSS/overview/index.html
  23. Negri, R.B., Prado, A.F.B.A., Sukhanov, A.: Studying the errors in the estimation of the variation of energy by the “patched-conics” model in the three-dimensional swing-by. Celest. Mech. Dyn. Astron. 1, 1 (2017) MathSciNetGoogle Scholar
  24. Okutsu, M., Yam, C.H., Longuski, J.M.: Low-thrust trajectories to Jupiter via gravity assists from Venus, Earth and Mars. AIAA (2006), Paper 2006-6745 Google Scholar
  25. Pourtakdoust, S.H., Sayanjali, M.: Fourth body gravitation effect on the resonance orbit characteristics of the restricted three-body problem. Nonlinear Dyn. 76(2), 955–972 (2014) MathSciNetCrossRefGoogle Scholar
  26. Prado, A.F.B.A.: Powered Swing-By. J. Guid. Control Dyn. 19, 1142–1147 (1996).  https://doi.org/10.2514/3.21756 CrossRefMATHADSGoogle Scholar
  27. Prado, A.F.B.A.: Close-approach trajectories in the elliptic restricted problem. J. Guid. Control Dyn. 20, 797–802 (1997).  https://doi.org/10.2514/2.4115 CrossRefMATHADSGoogle Scholar
  28. Prado, A.F.B.A.: A comparison of the “patched-conics” approach and the restricted problem for Swing-Bys. Adv. Space Res. 40, 113–117 (2007).  https://doi.org/10.1016/j.asr.2007.01.012 CrossRefADSGoogle Scholar
  29. Qian, Y.J., Zhang, W., Yang, X.D., Yao, M.H.: Energy analysis and trajectory design for low-energy escaping orbit in Earth–Moon system. Nonlinear Dyn. 85(1), 463–478 (2016) MathSciNetCrossRefGoogle Scholar
  30. Sanchez, D.M., Howell, K.C., Prado, A.F.B.A.: On the dynamics of a spacecraft in the irregular Haumea-Hi’iaka binary system. Adv. Astronaut. Sci. 158, 3681–3697 (2016) Google Scholar
  31. Santos, D.P.S., Prado, A.F.B.A., Casalino, L., Colasurdo, G.: Optimal trajectories towards near-Earth-objects using Solar electric propulsion (sep) and gravity assisted maneuver. J. Aerosp. Eng., Sci. Apl. 1(2), 51–64 (2008) Google Scholar
  32. Zotos, E.E.: Classifying orbits in the restricted three-body problem. Nonlinear Dyn. 82(3), 1233–1250 (2015) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Instituto Nacional de Pesquisas Espaciais—INPESão José dos CamposBrazil
  2. 2.Grupo de Dinâmica Orbital e PlanetologiaSão Paulo State University—UNESPGuaratinguetáBrazil
  3. 3.São Paulo State University—UNESPSão João da Boa VistaBrazil

Personalised recommendations