Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23

  • D. Sierra-PortaEmail author
Review Article


In the present paper a systematic study is carried out to validate the similarity or co-variability between daily terrestrial cosmic-ray intensity and three parameters of the solar corona evolution, i.e., the number of sunspots and flare index observed in the solar corona and the Ap index for regular magnetic field variations caused by regular solar radiation changes. The study is made for a period including three solar cycles starting with cycle 21 (year 1976) and ending on cycle 23 (year 2008). A cross-correlation analysis was used to establish patterns and dependence of the variables. This study focused on the time lag calculation for these variables and found a maximum of negative correlation over \(CC_{1}\approx 0.85\), \(CC_{2}\approx 0.75\) and \(CC_{3}\approx 0.63\) with an estimation of 181, 156 and 2 days of deviation between maximum/minimum of peaks for the intensity of cosmic rays related with sunspot number, flare index and Ap index regression, respectively.


Space weather Intensity of Cosmic Rays Solar activity 



Part of this work was supported by the Vicerrectoría de Investigación y Extensión of the Universidad Industrial de Santander, they provided a permanent sponsorship. DSP wants to thank the GIRG, Grupo Halley and Vicerrectoría Investigación y Extensión of Universidad Industrial de Santander for the hospitality during my post-doctoral fellowship. DSP also thanks Ángel G. Muñoz (IRI, Columbia University) for the comments, discussions and help in applying the technique to large amounts of datasets. The author also wants to thank an anonymous reviewer for the suggestion of some references to previous studies, and for the valuable comments and discussions.


  1. Dorman, I., Dorman, L.: J. Geophys. Res. 72(5), 1513 (1967) ADSCrossRefGoogle Scholar
  2. Mavromichalaki, H., Petropoulos, B.: Astrophys. Space Sci. 106(1), 61 (1984) ADSCrossRefGoogle Scholar
  3. Mavromichalaki, H., Belehaki, A., Rafios, X.: Astron. Astrophys. 330, 764 (1998) ADSGoogle Scholar
  4. Mavromichalaki, H., Paouris, E., Karalidi, T.: Sol. Phys. 245(2), 369 (2007) ADSCrossRefGoogle Scholar
  5. Mishra, M.: In: International Cosmic Ray Conference, vol. 2, p. 159 (2005) Google Scholar
  6. Paouris, E., Mavromichalaki, H., Belov, A., Gushchina, R., Yanke, V.: Sol. Phys. 280(1), 255 (2012) ADSCrossRefGoogle Scholar
  7. Popielawska, B.: Planet. Space Sci. 40(6), 811 (1992) ADSCrossRefGoogle Scholar
  8. Popielawska, B.: J. Geophys. Res. Space Phys. 100(A4), 5883 (1995) ADSCrossRefGoogle Scholar
  9. Schwabe, S.: Astron. Nachr. 21, 233 (1844) ADSCrossRefGoogle Scholar
  10. Usoskin, I., Kananen, H., Mursula, K., Tanskanen, P., Kovaltsov, G.: J. Geophys. Res. Space Phys. 103(A5), 9567 (1998) ADSCrossRefGoogle Scholar
  11. Van Allen, J.A.: Geophys. Res. Lett. 27(16), 2453 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Modelado Científico (CMC)Universidad del ZuliaMaracaiboVenezuela
  2. 2.Grupo de Investigación en Relatividad y Gravitación (GIRG), Escuela de FísicaUniversidad Industrial de SantanderBucaramangaColombia
  3. 3.Department of Physics and AstronomyUniversity of SheffieldSheffieldUK

Personalised recommendations