Radiative capture of proton by \(^{12}\mathrm{C}\) at low energy

  • Bakhadir Fayzullaevich Irgaziev
  • Jameel-Un Nabi
  • Abdul KabirEmail author
Original Article


Within the framework of potential cluster model, astrophysical S-factor of radiative capture reaction \(^{12}\mathrm{C} (\mathrm{p},\gamma)^{13}\mathrm{N}\) has been calculated in the two body cluster model for the energy range 0–1 MeV. The nuclear interaction in the initial and final states is described by the Woods–Saxon potential. The calculated astrophysical S-factor and rates are compared with known experimental results.


Elastic scattering Phase-shift Potential cluster model Astrophysical S-factor Rate of radiative capture 



J.-U. Nabi would like to acknowledge the support of the Higher Education Commission Pakistan through project 5557/KPK/NRPU/R&D/HEC/2016 and Pakistan Science Foundation through project PSF-TU-BITAK/KP-GIKI (02).


  1. Adelberger, E.G., Garcı’a, A., Hamish Robertson, R.G., et al.: Rev. Mod. Phys. 70, 1265 (1998) ADSCrossRefGoogle Scholar
  2. Adelberger, E.G., et al.: Rev. Mod. Phys. 83, 195–245 (2011) ADSCrossRefGoogle Scholar
  3. Angulo, C., Arnould, M., Rayet, M., et al.: Nucl. Phys. A 656, 3–183 (1999) ADSCrossRefGoogle Scholar
  4. Assenbaum, H.J., Langanke, K.L., Rolfs, C.: Z. Phys. A 327, 461–468 (1987) ADSGoogle Scholar
  5. Barker, F.C., Ferdous, N.: Aust. J. Phys. 33, 691–717 (1980) ADSCrossRefGoogle Scholar
  6. Burtebaev, N., Igamov, S.B., Peterson, R.J., Yarmukhamedov, R., Zazulin, D.M.: Phys. Rev. C 78, 035802 (2008) ADSCrossRefGoogle Scholar
  7. Christy, R.F., Duck, I.: Nucl. Phys. 24(2), 89–101 (1961) CrossRefGoogle Scholar
  8. Dubovichenko, S.B., Dzhazairov-Kakhramanov, A., Fessenkov, V.G.: Int. J. Mod. Phys. E 21(3), 1–44 (2012) CrossRefGoogle Scholar
  9. Dufour, M., Descouvemont, P.: Phys. Rev. C 56, 1831–1839 (1997) ADSCrossRefGoogle Scholar
  10. Fowler, W.A.: Nobel Lecture, pp. 172–229 (1983) Google Scholar
  11. Fowler, W.A., Caughlan, G.R., Zimmerman, B.A.: Annu. Rev. Astron. Astrophys. 5, 525–570 (1967) ADSCrossRefGoogle Scholar
  12. Hebbard, D.F., Vogl, J.L.: Nucl. Phys. 21, 652–675 (1960) CrossRefGoogle Scholar
  13. Jackson, H.L., Galonsky, A.I.: Phys. Rev. 89(2), 370–374 (1953) ADSCrossRefGoogle Scholar
  14. Langanke, K., Van Roosmalen, O.S., Fowler, W.A.: Nucl. Phys. A 435, 657–668 (1985) ADSCrossRefGoogle Scholar
  15. Mohr, P.J., Taylor, B.N.: Rev. Mod. Phys. 77, 1–107 (2005) ADSCrossRefGoogle Scholar
  16. Plattner, G.R., Viollier, R.D.: Nucl. Phys. A 365, 8–12 (1980) ADSCrossRefGoogle Scholar
  17. Rolfs, C., Azuma, R.E.: Nucl. Phys. A 227, 291–308 (1974) ADSCrossRefGoogle Scholar
  18. Rolfs, C.E., Rodney, W.S.: Cauldrons in Cosmos: Nuclear Astrophysics. University of Chicago Press, Chicago (1988) Google Scholar
  19. Vogl, J.L.: Radiative capture of protons by \(^{12}\mathrm{C}\) and \(^{13}\mathrm{C}\) below 700 keV. PhD thesis, California Inst. Tech. (1963). Unpublished Google Scholar
  20. Wildermuth, K., Kanellopoulos, Th.: Nucl. Phys. 7, 150–162 (1958) CrossRefGoogle Scholar
  21. Xu, Y., Takahashi, K., Gorielya, S., Arnould, M., Ohtac, M., Utsunomiya, H.: Nucl. Phys. A 918, 61–169 (2013) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Engineering SciencesGIK Institute of Engineering Sciences and TechnologyTopiPakistan

Personalised recommendations