Advertisement

Statistical approach to triple systems in three-dimensional motion

  • Ranjeet Kumar
  • Navin Chandra
  • Surekha Tomar
Original Article
  • 43 Downloads

Abstract

This paper considers disruption of triple close approaches with low initial velocities and equal masses in the framework of statistical escape theory in a three-dimensional space. The statistical escape theory is based on the assumption that the phase trajectory of a triple system is quasi-ergodic. This system is described by allowing for both energy and angular momentum conservation in the phase space. In this paper, “possibility of escape” is derived with the formation of a binary on the basis of relative distances of the participating bodies. The complete statistical solutions (i.e. the semi-major axis \(a\), the distributions of eccentricity \(e\) of the binary, binary energy \({E}_{{b}}\), escape energy \({E}_{{s}}\) of escaper, and its escape velocity \({v}_{{s}}\)) of the system are derived from the allowable phase space volumes and are in good agreement with the numerical results in the range of perturbing velocities \({v}_{{i}}\)(\(10^{ - 1} \le {v}_{{i}} \le 10^{ - 10}\)) and directions of \({v}_{{i}}(0 \le \alpha _{{i}},\beta _{{i}},\gamma _{{i}} \le \pi )\), \({i} = 1,2,3\). In this paper, the double limit process has been applied to approximate the escape probability. Through this process, it is observed that the perturbing velocity \({v}_{{i}} \to 0^{ +} \), as the product of the semi-major axis \(a\) of the final binary and the square of the escape velocity \({v}_{{s}}\) approach 2/3, i.e. \({a} {v}_{{s}}^{2} \to 2 / 3\), whatever direction of \(\mathbf{v}_{{i}}\) may be.

Keywords

Astrophysics Three-body problem Triple close approaches Statistical theory 

Notes

Acknowledgements

We are thankful to Prof. M. Valtonen, Tuorla Observatory, University of Turku, Finland for his suggestion and for providing related research papers. We wish to put on record our gratitude to Prof. K.B. Bhatnagar who had given us valuable suggestions on our work when he was alive.

References

  1. Anosova, J.P., Bertov, D.L., Orlov, V.V.: Astrofizika 20, 327 (1984) ADSGoogle Scholar
  2. Chandra, N., Bhatnagar, K.B.: Astron. Astrophys. 346, 652–662 (1999) ADSGoogle Scholar
  3. Heggie, D.C.: Mon. Not. R. Astron. Soc. 173, 729 (1975) ADSCrossRefGoogle Scholar
  4. Henon, M.: Celest. Mech. 10, 375 (1974) ADSCrossRefGoogle Scholar
  5. Kumar, R., Chandra, N., Tomar, S.: Astrophys. Space Sci. 361, 79 (2016) ADSCrossRefGoogle Scholar
  6. Marchal, C., Yoshida, J., Sun, Y.S.: Celest. Mech. 34, 65–93 (1984) ADSCrossRefGoogle Scholar
  7. Mikkola, S.: Mon. Not. R. Astron. Soc. 269, 127 (1994) ADSCrossRefGoogle Scholar
  8. Mikkola, S., Valtonen, M.: Mon. Not. R. Astron. Soc. 223, 269 (1986) ADSCrossRefGoogle Scholar
  9. Monaghan, J.J.: Mon. Not. R. Astron. Soc. 176, 63 (1976a) ADSCrossRefGoogle Scholar
  10. Monaghan, J.J.: Mon. Not. R. Astron. Soc. 177, 583 (1976b) ADSCrossRefGoogle Scholar
  11. Nash, P.D., Monaghan, J.J.: Mon. Not. R. Astron. Soc. 184, 119 (1978) ADSCrossRefGoogle Scholar
  12. Saslaw, W.C., Valtonen, M., Aarseth, S.: Astrophys. J. 190, 253 (1974) ADSCrossRefGoogle Scholar
  13. Standish, M.: Celest. Mech. 4, 44 (1971) ADSMathSciNetCrossRefGoogle Scholar
  14. Sundman, K.F.: Acta Math. 36, 105 (1912) MathSciNetCrossRefGoogle Scholar
  15. Szebehely, V.: Celest. Mech. 4, 116 (1971) ADSCrossRefGoogle Scholar
  16. Szebehely, V.: In: Tapley, B., Szebehely, V. (eds.) Recent advances in dynamical astronomy, p. 75. Reidel, Dordrecht (1973) CrossRefGoogle Scholar
  17. Valtonen, M.J.: In: Kozai, Y. (ed.) Stability of the solar system and of small stellar systems. Proc. IAU Symp., vol. 62, p. 211. Reidel, Dordrecht (1974) CrossRefGoogle Scholar
  18. Valtonen, M.J.: Astrophys. Space Sci. 42, 331–347 (1976) ADSCrossRefGoogle Scholar
  19. Valtonen, M., Millari, A., Orlov, V., Rubinov, A.: ASP Conference Series 316 (2004) Google Scholar
  20. Valtonen, M., Karttunen, H.: The Three Body Problem. Cambridge University Press, Cambridge (2006) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsR.B.S. College (B.R. Ambedkar University)AgraIndia
  2. 2.Department of MathematicsDeshbandhu College (University of Delhi)KalkajiIndia

Personalised recommendations