Absolute orbit determination using line-of-sight vector measurements between formation flying spacecraft

Original Article
  • 40 Downloads

Abstract

The purpose of this paper is to show that absolute orbit determination can be achieved based on spacecraft formation. The relative position vectors expressed in the inertial frame are used as measurements. In this scheme, the optical camera is applied to measure the relative line-of-sight (LOS) angles, i.e., the azimuth and elevation. The LIDAR (Light radio Detecting And Ranging) or radar is used to measure the range and we assume that high-accuracy inertial attitude is available. When more deputies are included in the formation, the formation configuration is optimized from the perspective of the Fisher information theory. Considering the limitation on the field of view (FOV) of cameras, the visibility of spacecraft and the installation of cameras are investigated. In simulations, an extended Kalman filter (EKF) is used to estimate the position and velocity. The results show that the navigation accuracy can be enhanced by using more deputies and the installation of cameras significantly affects the navigation performance.

Keywords

Autonomous orbit determination Formation flying spacecraft Measurement constraint Fisher information theory 

Notes

Acknowledgement

This work is supported by the Major Program of National Natural Science Foundation of China under Grant Numbers 61690210 and 61690213.

References

  1. Alfriend, K.T., Vadali, S.R., Gurfil, P., How, J., Breger, L.S.: Spacecraft Formation Flying: Dynamics, Control and Navigation (2009). Butterworth-Heinemann Google Scholar
  2. Bandyopadhyay, S., Foust, R., Subramanian, G.P., Chung, S.J., Hadaegh, F.Y.: Review of formation flying and constellation missions using nanosatellites. J. Spacecr. Rockets 53, 567 (2016).  https://doi.org/10.2514/1.A33291 ADSCrossRefGoogle Scholar
  3. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. Wiley, New York (2002).  https://doi.org/10.1002/0471221279.ch3 Google Scholar
  4. Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering. Wiley, New York (1997) MATHGoogle Scholar
  5. Christian, J.A., Robinson, S.B., D’Souza, C.N., Ruiz, J.P.: Cooperative relative navigation of spacecraft using flash light detection and ranging sensors. J. Guid. Control Dyn. 37, 452 (2014).  https://doi.org/10.2514/1.61234 ADSCrossRefGoogle Scholar
  6. Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems, 2nd edn. Chapman & Hall, London (2011) MATHGoogle Scholar
  7. D’Amico, S., Montenbruck, O.: Proximity operations of formation-flying spacecraft using an eccentricity/inclination vector separation. J. Guid. Control Dyn. 29, 554 (2009).  https://doi.org/10.2514/1.15114 CrossRefGoogle Scholar
  8. D’Amico, S., Ardaens, J.S., Larsson, R.: Spaceborne autonomous formation-flying experiment on the PRISMA mission. J. Guid. Control Dyn. 35, 834 (2012).  https://doi.org/10.2514/1.55638 ADSCrossRefGoogle Scholar
  9. Elsaka, B., Kusche, J., Ilk, K.H.: Recovery of the Earth’s gravity field from formation-flying satellites: temporal aliasing issues. Adv. Space Res. 50, 1534 (2012).  https://doi.org/10.1016/j.asr.2012.07.016 ADSCrossRefGoogle Scholar
  10. Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge (1974). Chap. 3 Google Scholar
  11. Hill, K., Born, G.: Autonomous interplanetary orbit determination using satellite-to-satellite tracking. J. Guid. Control Dyn. 30, 679 (2007).  https://doi.org/10.2514/1.24574 ADSCrossRefGoogle Scholar
  12. Huang, P.F., Chen, L., Zhang, B., Meng, Z.J., Liu, Z.X.: Autonomous rendezvous and docking with nonfull field of view for tethered space robot. Int. J. Aerosp. Eng. 2017, 3162349 (2017) Google Scholar
  13. Huxel, P.J., Bishop, R.H.: Navigation algorithms and observability analysis for formation flying missions. J. Guid. Control Dyn. 32, 1218 (2009).  https://doi.org/10.2514/1.41288 ADSCrossRefGoogle Scholar
  14. Jauffret, C.: Observability and Fisher information matrix in nonlinear regression. IEEE Trans. Aerosp. Electron. Syst. 43, 756 (2007).  https://doi.org/10.1109/TAES.2007.4285368 ADSCrossRefGoogle Scholar
  15. Kang, W., Ross, I.M., Pham, K., Gong, Q.: Autonomous observability of networked multisatellite systems. J. Guid. Control Dyn. 32, 869 (2009).  https://doi.org/10.2514/1.38826 ADSCrossRefGoogle Scholar
  16. Lemoine, F.G., Smith, D.E., Rowlands, D.D., Zuber, M.T., Neumann, G.A., Chinn, D.S., Pavlis, D.E.: An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res. 106, 23359 (2001).  https://doi.org/10.1029/2000JE001426 ADSCrossRefGoogle Scholar
  17. Maessen, D., Gill, E.: Relative state estimation and observability analysis for formation flying satellites. J. Guid. Control Dyn. 35, 321 (2012).  https://doi.org/10.2514/1.55125 ADSCrossRefGoogle Scholar
  18. Markley, F.L.: Autonomous navigation using landmark and intersatellite data. In: AIAA/AAS Astrodynamics Conference, Seatle, WA, Hawaii (1984). AIAA Paper Google Scholar
  19. Markley, F.L.: Approximate Cartesian state transition matrix. J. Astronaut. Sci. 34, 161 (1986) ADSGoogle Scholar
  20. Ou, Y., Zhang, H.: Observability-based Mars autonomous navigation using formation flying spacecraft. J. Navig. 71, 21 (2018).  https://doi.org/10.1017/S0373463317000510 CrossRefGoogle Scholar
  21. Ou, Y., Zhang, H., Xing, J.: Autonomous orbit determination and observability analysis for formation satellites. In: 2016 35th Chinese Control Conference, CCC, Chengdu (2016).  https://doi.org/10.1109/ChiCC.2016.7554179 Google Scholar
  22. Psiaki, M.L.: Absolute orbit and gravity determination using relative position measurements between two satellites. J. Guid. Control Dyn. 34, 1285 (2011).  https://doi.org/10.2514/1.47560 ADSCrossRefGoogle Scholar
  23. Roscoe, C.W., Vadali, S.R., Alfriend, K.T., Desai, U.P.: Optimal formation design for magnetospheric multiscale mission using differential orbital elements. J. Guid. Control Dyn. 34, 1070 (2011).  https://doi.org/10.2514/1.52484 ADSCrossRefGoogle Scholar
  24. Schmidt, U.: ASTRO APS autonomous star sensor first year flight experience and operations on AlphaSat (invited). In: AIAA/AAS Astrodynamics Specialist Conference, vol. 701 (2014). American Institute of Aeronautics and Astronautics Google Scholar
  25. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49, 9 (2004).  https://doi.org/10.1109/TAC.2004.834121 MathSciNetCrossRefMATHGoogle Scholar
  26. Steven, M.K.: In: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall Signal Processing Series. Prentice Hall, New York (1993) Google Scholar
  27. Wang, Y., Zheng, W., Sun, S., Li, L.: X-ray pulsar-based navigation using time-differenced measurement. Aerosp. Sci. Technol. 36, 27 (2014).  https://doi.org/10.1016/j.ast.2014.03.007 CrossRefGoogle Scholar
  28. Wang, X., Qin, W., Bai, Y., Cui, N.: A novel decentralized relative navigation algorithm for spacecraft formation flying. Aerosp. Sci. Technol. 48, 28 (2016).  https://doi.org/10.1016/j.ast.2015.10.014 CrossRefGoogle Scholar
  29. Yang, H.X., Vetrisano, M., Vasile, M., Zhang, W.: Autonomous navigation of spacecraft formation in the proximity of minor bodies. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 230, 189 (2016).  https://doi.org/10.1177/0954410015590465 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Aerospace Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations