Astrophysics and Space Science

, Volume 345, Issue 1, pp 1–9 | Cite as

On the nature of dark energy: the lattice Universe

Letter to the Editor

Abstract

There is something unknown in the cosmos. Something big. Which causes the acceleration of the Universe expansion, that is perhaps the most surprising and unexpected discovery of the last decades, and thus represents one of the most pressing mysteries of the Universe. The current standard ΛCDM model uses two unknown entities to make everything fit: dark energy and dark matter, which together would constitute more than 95 % of the energy density of the Universe. A bit like saying that we have understood almost nothing, but without openly admitting it. Here we start from the recent theoretical results that come from the extension of general relativity to antimatter, through CPT symmetry. This theory predicts a mutual gravitational repulsion between matter and antimatter. Our basic assumption is that the Universe contains equal amounts of matter and antimatter, with antimatter possibly located in cosmic voids, as discussed in previous works. From this scenario we develop a simple cosmological model, from whose equations we derive the first results. While the existence of the elusive dark energy is completely replaced by gravitational repulsion, the presence of dark matter is not excluded, but not strictly required, as most of the related phenomena can also be ascribed to repulsive-gravity effects. With a matter energy density ranging from ∼5 % (baryonic matter alone, and as much antimatter) to ∼25 % of the so-called critical density, the present age of the Universe varies between about 13 and 15 Gyr. The SN Ia test is successfully passed, with residuals comparable with those of the ΛCDM model in the observed redshift range, but with a clear prediction for fainter SNe at higher z. Moreover, this model has neither horizon nor coincidence problems, and no initial singularity is requested. In conclusion, we have replaced all the tough problems of the current standard cosmology (including the matter-antimatter asymmetry) with only one question: is the gravitational interaction between matter and antimatter really repulsive as predicted by the theory and as the observation of the Universe seems to suggest? We are awaiting experimental responses.

Keywords

Cosmology: theory Dark energy Gravitation Large-scale structure of Universe 

References

  1. Amendola, L.: Mon. Not. R. Astron. Soc. 312, 521 (2000) ADSCrossRefGoogle Scholar
  2. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Astrophys. Space Sci. 342, 155 (2012) ADSCrossRefGoogle Scholar
  3. Benoit-Lévy, A., Chardin, G.: Astron. Astrophys. 537, A78 (2012) ADSCrossRefGoogle Scholar
  4. Cabbolet, M.J.T.F.: Ann. Phys. 522, 699 (2010) CrossRefGoogle Scholar
  5. Cabbolet, M.J.T.F.: Ann. Phys. 523, 990 (2011) CrossRefGoogle Scholar
  6. Capozziello, S., Cardone, V.F., Troisi, A.: Phys. Rev. D 71, 043503 (2005) ADSCrossRefGoogle Scholar
  7. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D 70, 043528 (2004) ADSCrossRefGoogle Scholar
  8. Chardin, G.: Nucl. Phys. A 558, 477 (1993) ADSCrossRefGoogle Scholar
  9. Chardin, G.: Hyperfine Interact. 109, 83 (1997) ADSCrossRefGoogle Scholar
  10. Chardin, G., Rax, J.-M.: Phys. Lett. B 282, 256 (1992) ADSCrossRefGoogle Scholar
  11. Cohen, A.G., de Rujula, A., Glashow, S.L.: Astrophys. J. 495, 539 (1998) ADSCrossRefGoogle Scholar
  12. Conley, A., Guy, J., Sullivan, M., et al.: Astrophys. J. Suppl. Ser. 192, 1 (2011) ADSCrossRefGoogle Scholar
  13. Dietrich, J.P., Werner, N., Clowe, D., et al.: Nature 487, 202 (2012) ADSCrossRefGoogle Scholar
  14. Dopita, M.: Astrophys. Space Sci. 337, 3 (2012) ADSCrossRefGoogle Scholar
  15. Dvali, G., Gabadadze, G., Porrati, M.: Phys. Lett. B 485, 208 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  16. Good, M.L.: Phys. Rev. 121, 311 (1961) MathSciNetADSCrossRefGoogle Scholar
  17. Hajdukovic, D.S.: Int. J. Theor. Phys. 49, 1023 (2010) MATHCrossRefGoogle Scholar
  18. Hajdukovic, D.S.: Astrophys. Space Sci. 334, 219 (2011a) ADSMATHCrossRefGoogle Scholar
  19. Hajdukovic, D.S.: Astrophys. Space Sci. 334, 215 (2011b) ADSMATHCrossRefGoogle Scholar
  20. Hajdukovic, D.S.: Astrophys. Space Sci. 337, 9 (2012a) ADSCrossRefGoogle Scholar
  21. Hajdukovic, D.S.: Astrophys. Space Sci. 339, 1 (2012b) ADSMATHCrossRefGoogle Scholar
  22. Jarosik, N., Bennett, C.L., Dunkley, J., et al.: Astrophys. J. Suppl. Ser. 192, 14 (2011) ADSCrossRefGoogle Scholar
  23. Kellerbauer, A., Amoretti, M., Belov, A.S., et al.: Nucl. Instrum. Methods Phys. Res. B 266, 351 (2008) ADSCrossRefGoogle Scholar
  24. Kelly, P.L., Hicken, M., Burke, D.L., Mandel, K.S., Kirshner, R.P.: Astrophys. J. 715, 743 (2010) ADSCrossRefGoogle Scholar
  25. Kessler, R., Becker, A.C., Cinabro, D., et al.: Astrophys. J. Suppl. Ser. 185, 32 (2009) ADSCrossRefGoogle Scholar
  26. Komatsu, E., Smith, K.M., Dunkley, J., et al.: Astrophys. J. Suppl. Ser. 192, 18 (2011) ADSCrossRefGoogle Scholar
  27. Krauss, L.M., Chaboyer, B.: Science 299, 65 (2003) ADSCrossRefGoogle Scholar
  28. Madelung, E.: Phys. Z. 19, 524 (1918) MATHGoogle Scholar
  29. Morrison, P.: Am. J. Phys. 26, 358 (1958) ADSCrossRefGoogle Scholar
  30. Napolitano, N.R., Capozziello, S., Romanowsky, A.J., Capaccioli, M., Tortora, C.: Astrophys. J. 748, 87 (2012) ADSCrossRefGoogle Scholar
  31. Ni, G.-J.: In: Dvoeglazov, V.V., Espinoza Garrido, A.A. (eds.) Relativity, Gravitation, Cosmology, pp. 123–136 (2004) Google Scholar
  32. Nieto, M.M., Goldman, T.: Phys. Rep. 205, 221 (1991) ADSCrossRefGoogle Scholar
  33. Noyes, H.P.: Phys. Essays 21, 52 (2008) ADSCrossRefGoogle Scholar
  34. Noyes, H.P., Starson, S.: SLAC-PUB-5429 (1991) Google Scholar
  35. Peebles, P.J., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  36. Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  37. Riess, A.G., Filippenko, A.V., Challis, P., et al.: Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  38. Riess, A.G., Strolger, L.-G., Casertano, S., et al.: Astrophys. J. 659, 98 (2007) ADSCrossRefGoogle Scholar
  39. Ripalda, J.M.: arXiv:gr-qc/9906012v14 (2010)
  40. Schiff, L.I.: Phys. Rev. Lett. 1, 254 (1958) ADSCrossRefGoogle Scholar
  41. Schiff, L.I.: Proc. Natl. Acad. Sci. 45, 69 (1959) MathSciNetADSMATHCrossRefGoogle Scholar
  42. Sullivan, M., Guy, J., Conley, A., et al.: Astrophys. J. 737, 102 (2011) ADSCrossRefGoogle Scholar
  43. Tegmark, M., Eisenstein, D.J., Strauss, M.A., et al.: Phys. Rev. D 74, 123507 (2006) ADSCrossRefGoogle Scholar
  44. Villata, M.: Europhys. Lett. 94, 20001 (2011) ADSCrossRefGoogle Scholar
  45. Villata, M.: Astrophys. Space Sci. 339, 7 (2012a) ADSCrossRefGoogle Scholar
  46. Villata, M.: Astrophys. Space Sci. 337, 15 (2012b) ADSCrossRefGoogle Scholar
  47. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Osservatorio Astrofisico di TorinoINAFPino TorineseItaly

Personalised recommendations