Aquaculture International

, Volume 28, Issue 1, pp 403–419 | Cite as

Production of Daphnia similis Claus, 1876 using wastewater from tilapia cultivation in a biofloc system

  • Clarissa Vilela Figueiredo da Silva CamposEmail author
  • Renata da Silva Farias
  • Suzianny Maria Bezerra Cabral da Silva
  • William Severi
  • Luis Otavio Brito
  • Alfredo Olivera Gálvez


This research evaluated the growth of Daphnia similis in wastewater from Nile tilapia (Oreochromis niloticus) farmed in a biofloc system (carbohydrate:nitrogen of 12:1). During 30 days, physical-chemical and growth variables were measured in the following treatments: DCWC—D. similis growth in clear water with the addition of C. vulgaris (autotrophic culture); DB—D. similis growth in biofloc wastewater from Nile tilapia farmed without the addition of C. vulgaris (mixotrophic culture); and DBC—D. similis growth in biofloc wastewater from Nile tilapia farmed with the addition of C. vulgaris (mixotrophic culture). The biofloc wastewater (DB and DBC) underwent significant changes in water quality (P < 0.05) that influenced the growth of D. similis, which reached two population cycles. Statistical differences (P < 0.05) between the treatments were found for specific growth rate, doubling time, maximum average density (MAD), and yield, in which DBC achieved a yield of 136 ± 31 ind L−1 day−1 and a MAD 8-fold higher than in DCWC in the first cycle and did not differ (P > 0.05) from DB in relation to MAD in the second cycle. Thus, wastewater from Nile tilapia cultivation in a biofloc system as a culture medium for raising D. similis, with the addition of C. vulgaris, proved to be a promising option for producing live food for aquaculture.


BFT Cladoceran Live food Microalgae Oreochromis niloticus Mixotrophic 



D. similis growth in biofloc wastewater from Nile tilapia farmed without the addition of C. vulgaris


D. similis growth in biofloc wastewater from Nile tilapia farmed with the addition of C. vulgaris


D. similis growth in clear water with the addition of C. vulgaris


Dissolved oxygen


Doubling time


Initial density


Maximum average density


Maximum density day








Specific growth rate


Total ammonia nitrogen




Funding information

The authors would like to acknowledge the Fundação de Amparo à Ciência no Estado de Pernambuco (FACEPE) for the grants to CC (Grant Number 087950615) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the grants to RF (Grant Number 1694483). The authors would also like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial assistance to AOG (PQ 311058/2015-9).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experiment was conducted in accordance with Brazilian Law no. 11.794/2008.


  1. Abreu JL, Brito LO, Moraes LBS, Silva DLB, Barbosa SMD, Gálvez AO (2016) Utilization of solid residue from shrimp culture biofloc system for microalgae Navicula sp production. Bol Inst Pesca 42(4):781–791. CrossRefGoogle Scholar
  2. Abreu JL, Brito LO, Lima PCM, Silva SMBC, Gálvez AO (2019) Effects of addition of Navicula sp. (diatom) in different densities to postlarvae of shrimp Litopenaeus vannamei reared in a BFT system: growth, survival, productivity and fatty acid profile. Aquac Res 50:2231–2239. CrossRefGoogle Scholar
  3. Ahmad HI, Verma AK, Babitha Rani AM, Rathore G, Saharan N, Gora AH (2016) Growth, non-specific immunity and disease resistance of Labeorohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture 457:61–67. CrossRefGoogle Scholar
  4. Ahmad I, Babitha Rani AM, Verma AK, Maqsood M (2017) Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquac Int 25(3):1215–1226. CrossRefGoogle Scholar
  5. Alcántara-Azuara AK, Contreras-Rodríguez AI, Reyes-Arroyo NE, Castro-Mejía J, Castañeda-Trinidad H, Castro Mejía G, Ocampo-Cervantes JA (2014) Comparación de la densidad poblacional de Daphnia pulex Müller, 1785 en cultivos de laboratorio alimentadas con tres microalgas verdes unicelulares (Sphaerocystis sp., Chlorella vulgaris y Haematococcus pluvialis). Revista digital del departamento 1(5):18–25 Google Scholar
  6. Alva-Martínez AF, Sarma SSS, Nandini S (2004) Population growth of Daphnia pulex (Cladocera) on a mixed diet (Microcystis aeruginosa with Chlorella or Scenedesmus). Crustaceana 77(8):973–988. CrossRefGoogle Scholar
  7. APHA American Public Health Association (2005) Standard methods for the examination of water and wastewater. American Public Health Association, WashingtonGoogle Scholar
  8. Avnimelech Y (2009) Biofloc technology – a practical guide book, First edn. The World Aquaculture Society, Baton RougeGoogle Scholar
  9. Avnimelech Y (2012) Biofloc technology - a practical guide book, 2nd edn. The World Aquaculture Society, Baton RougeGoogle Scholar
  10. Azim ME, Little DC (2008) The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283(1-4):29–35. CrossRefGoogle Scholar
  11. Barrera TC, De Lara AR, Mejía CG, Castro Mejía J, Malpica Sánchez A (2003) Alimento vivo em la acuicultura. Contactos 48:27–33 Google Scholar
  12. Boyd CE (2015) Water quality: an introduction, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  13. Buratini SV, Aragão MA (2012) Alimento complementar adicionado às culturas de Daphnia similis e Ceriodaphnia dubia: efeitos da levedura e da digestão da ração. J Braz Soc Ecotoxicol 7(1):21–26. CrossRefGoogle Scholar
  14. Chaudhary R, Dikshit AK, Tong YW (2018) Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environ Sci Pollut Res 25:20399–20406. CrossRefGoogle Scholar
  15. Chiu ST, Shiu YL, Wu TM, Lin YS, Liu CH (2015) Improvement in non-specific immunity and disease resistance of barramundi, Lates calcarifer (Bloch), by diets containing Daphnia similis meal. Fish Shellfish Immunol 44(1):172–179. CrossRefPubMedGoogle Scholar
  16. Cuevas-Uribe R, Mims SD (2014) Investigation in reuse of decommissioned wastewater facility and reclaimed water for culturing paddlefish fingerlings. J World Aquacult Soc 45(3):322–332. CrossRefGoogle Scholar
  17. Day SB, Salie K, Stander HB (2016) A growth comparison among three commercial tilapia species in a biofloc system. Aquac Int 24(5):1309–1322. CrossRefGoogle Scholar
  18. Ebeling JM, Timmons MB, Bisogni JJ (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 257:346–358. CrossRefGoogle Scholar
  19. Ebert D (2005) Ecology, epidemiology and evolution of parasitism in Daphnia. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda Available via Google Scholar
  20. Ekasari J, Suprayudi MA, Wiyoto W, Hazanah RF, Lenggara GS, Sulistiani R, Zairin M (2016) Biofloc technology application in African catfish fingerling production: The effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquaculture 464:349–356. CrossRefGoogle Scholar
  21. Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management in aquaculture. Water Qual. Google Scholar
  22. Esparza-Leal HM, Amaral Xavier JA, Wasielesky W (2016) Performance of Litopenaeus vannamei postlarvae reared in indoor nursery tanks under biofloc conditions at different salinities and zero-water exchange. Aquac Int 24(5):1435–1447. CrossRefGoogle Scholar
  23. Falaise C, François C, Travers MA, Morga B, Haure J, Tremblay R, Leignel V (2016) Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Mar drugs 14(9):159. CrossRefPubMedCentralGoogle Scholar
  24. Fallahi M, Takami GA, Vossoughi GH, Mashinchian A, Mehdipour N (2011) Effects of Daphnia magna fed with B group vitamins-enriched Chlorella sp and Scenedesmus obliquus on the growth rate of Rutilus frisii kutum fry. Int J Environ Res 5(3):763–768. CrossRefGoogle Scholar
  25. Felföldy L, Szabo E, Tothl L (1987) A biologia ivizminösités. Vizügyi Hodrobiologia Vizdok, BudapestGoogle Scholar
  26. Fu H, Xu J, Xiao E, He F, Xu P, Zhou Q, Wu Z (2017) Application of dual stable isotopes in investigating the utilization of two wild dominant filamentous algae as food sources for Daphnia magna. J. Freshwater Ecol. 32 (1):349–361. CrossRefGoogle Scholar
  27. Furtado PS, Poersch LH, Wasielesky W (2015) The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology (BFT). Aquac Int 23(1):345–358CrossRefGoogle Scholar
  28. Gliwicz ZM, Maszczyk P, Uszko W (2012) Enhanced growth at low population density in Daphnia: the absence of crowding effects or relief from visual predation? Freshw Biol 57(6):1166–1117. CrossRefGoogle Scholar
  29. Golterman HL, Clymo RS, MAM O (1978) Methods for physical and chemical analysis of fresh waters, 2nd edn. Blackwell Scientific, OxfordGoogle Scholar
  30. Gross J, Ligges U (2015) Nortest: tests for normality. R package version 1.0-4. [online].
  31. Hargreaves JA (2013) Bioflocs production system for aquaculture. Southern Regional Aquaculture Center (SRAC) Publication No. 4503.Google Scholar
  32. Herawati VE, Nugroho RA, Pinandoyo, Hutabarat J (2017) Nutritional value content, biomass production and growth performance of Daphnia magna cultured with different animal wastes resulted from probiotic bacteria fermentation. IOP Conference Series: Earth and Environmental Science, 55: 012004. CrossRefGoogle Scholar
  33. Hoff FH, Snell TW (2004) Plankton culture manual, 6th edn. Horida Aqua Farms Inc., FloridaGoogle Scholar
  34. Huang J, Yang Q, Ma Z, Zhou F, Yang L, Deng J, Jiang S (2017) Effects of adding sucrose on Penaeus monodon (Fabricius, 1798) growth performance and water quality in a biofloc system. Aquac Res 48(5):2316–2327. CrossRefGoogle Scholar
  35. Jin H, Zhang Y, Yang R (1991) Toxicity and distribution of copper in an aquatic microcosm under different alkalinity and hardness. Chemosphere 22(5-6):577–596. CrossRefGoogle Scholar
  36. Kaya M, Cakmak YS, Baran T, Asan-Ozusaglam M, Mentes A, Tozak KO (2014) New chitin, chitosan, and O-carboxymethyl chitosan sources from resting eggs of Daphnia longispina (Crustacea); with physicochemical characterization, and antimicrobial and antioxidant activities. Biotechnol Bioprocess Eng 19(1):58–69. CrossRefGoogle Scholar
  37. Khatoon H, Banerjee S, Guan Yuan GT, Haris N, Ikhwanuddin M, Ambak MA, Endut A (2016) Biofloc as a potential natural feed for shrimp postlarvae. Int Biodeterior Biodegrad 113:304–309. CrossRefGoogle Scholar
  38. Koroleff F (1976) Determination of nutrients. In: Grasshoff K (ed) Methods of seawater analysis. Weinheim, Verlag Chemie, pp 117–187Google Scholar
  39. Lima PCM, Abreu JL, Silva AEM, Severi W, Gálvez AO, Brito LO (2018) Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities. Span J Agric Res 16(4):e0612. CrossRefGoogle Scholar
  40. Ljubobratovic U, Kucska B, Sandor Z, Peteri A, Ronyai A (2016) Effects of stocking density, feeding technique and vitamin C supplementation on the habituation on dry feed of pikeperch (Sander lucioperca) pond reared juveniles. Iran J Fish Sci 15(4):1337–1347 URL: Google Scholar
  41. Maceda-Veiga A, Webster G, Canals O, Salvadó H, Weightman AJ, Cable J (2015) Chronic effects of temperature and nitrate pollution on Daphnia magna: is this Cladoceran suitable for widespread use as a tertiary treatment? Water Res 83:141–152. CrossRefPubMedGoogle Scholar
  42. Mackereth FJH, Heron J, Talling JF (1978) Water analysis: some revised methods for limnologists. Blackwell Scientific Publications, LondonGoogle Scholar
  43. Magnotti C, Lopes R, Derner R, Vinatea L (2016) Using residual water from a marine shrimp farming BFT system. Part I: nutrient removal and marine microalgae biomass production. Aquac Res 47(8):2435–2443. CrossRefGoogle Scholar
  44. Manso PRJ (2007) Produção em cativeiro de larvas de camarão marinho Litopenaeus vannamei: influência do campo magnético sobre a metamorfose e sobrevivência larval. Dissertation, Universidade Federal de Santa CatarinaGoogle Scholar
  45. Marinho YF, Brito LO, Silva CVF, Santos IGS, Gálvez AO (2014) Effect of addition of Navicula sp. on plankton composition and postlarvae growth of Litopenaeus vannamei reared in culture tanks with zero water exchange. Lat Am J Aquat Res 42:427–437 CrossRefGoogle Scholar
  46. Miao S, Zhu J, Zhao C, Sun L, Zhang X, Chen G (2017) Effects of C/N ratio control combined with probiotics on the immune response, disease resistance, intestinal microbiota and morphology of giant freshwater prawn (Macrobrachium rosenbergii). Aquaculture 476:125–133. CrossRefGoogle Scholar
  47. Mota GCP, Campos CVFS, Moraes LBS, Bruzaca DNA, Brito LO, Gálvez AO (2019) Effect of the c:n ratio on Daphnia magna (Straus, 1820) production using tilapia farming wastewater. Bol Inst Pesca (3):45, e463. CrossRefGoogle Scholar
  48. Nzayisenga JC, Eriksson K, Sellstedt A (2018) Mixotrophic and heterotrophic production of lipids and carbohydrates by a locally isolated microalga using wastewater as a growth medium. Bioresour Technol 257:260–265. CrossRefPubMedGoogle Scholar
  49. Ocampo LE, Botero MC, Restrepo LF (2010) Evaluación del crescimento de um cultivo de Daphnia magna alimentado com Saccharomyces cereviseae y um enriquecimento com avena soya. RCCP 23:75–78 Google Scholar
  50. Olvera-Ramírez R, Centeno-Ramos C, Martínez-Jerónimo F (2010) Toxic effects of Pseudanabaena tenuis (Cyanobacteria) on the Cladocerans Daphnia magna and Ceriodaphnia dubia. Hidrobiológica 20(3):203–212 Google Scholar
  51. Otero AP, Muñoz MP, Medina-Robles V, Cruz-Casallas P (2013) Efecto del alimento sobre variables productivas de dos espécies de Cladóceros bajo condiciones de laboratório. Rev MVZ Cordoba 18:3642–3647 CrossRefGoogle Scholar
  52. Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V (2019) Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications. Biotechnol Adv 37(3):422–443. CrossRefPubMedGoogle Scholar
  53. Paray BA, Al-Sadoon MK (2016) Utilization of organic manure for culture of cladocerans, Daphnia carinata, Ceriodaphnia carnuta e copepod, Thermocyclops decipiens under laboratory conditions. Indian J Geo-Mar Sci 45(3):399–404 Available via Google Scholar
  54. Pérez-Fuentes JA, Hernández-Vergara MP, Pérez-Rostro CI, Fogel I (2016) C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture 452:247–251. CrossRefGoogle Scholar
  55. Perez-Garcia O, Bashan Y (2015).Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. In Algal biorefineries, Springer, Cham, pp. 61-131. CrossRefGoogle Scholar
  56. Pinho SM, Molinari D, de Mello GL, Fitzsimmons KM, Coelho Emerenciano MG (2017) Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol Eng 103:146–153. CrossRefGoogle Scholar
  57. Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A, (eds.) Cultures and Collections of Algae, Proc. U.S.–Japan Conf., Hakone, 260 1966. J. Soc. Plant Physiol., Tokyo, Japan, pp63–75Google Scholar
  58. Qi W, Nong G, Preston JF, Ben-Ami F, Ebert D (2009) Comparative metagenomics of Daphnia symbionts. BMC Genomics 10(1):172. CrossRefPubMedPubMedCentralGoogle Scholar
  59. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [online]
  60. Rose R, Warne M, Lim R (2002) Some life history responses of the Cladoceran Ceriodaphnia cf. dubia to variations in population density at two different food concentrations. Hydrobiologia 481(1-3):157–164. CrossRefGoogle Scholar
  61. Safi C, Zebib B, Merah O, Pontalier PY, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energ Rev 35:265–278. CrossRefGoogle Scholar
  62. Silva AF, Lara GR, Ballester EC, Krumennauer D, Abreu PC, Wasielesky W Jr (2013) Efeito das altas densidades de estocagem no crescimento e sobrevivência de Litopenaeus vannamei na fase final de engorda, cultivados em sistemas de bioflocos (BFT). Ciênc anim bras 14(3):279–287. CrossRefGoogle Scholar
  63. Sipaúba-Tavares LH, Rocha O (2001) Produção de plâncton (Fitoplâncton e Zooplâncton) para a alimentação de organismos aquáticos. RiMa, São Carlos, pp 68–72Google Scholar
  64. Torrentera L, Tacon A (1989) La vivo y producción de alimento su importancia en acuacultura: Uma diagnosis. Food Aquaculture Organization, RomeGoogle Scholar
  65. Wang C, Pan L, Zhang K, Xu W, Zhao D, Mei L (2016) Effects of different carbon sources addition on nutrition composition and extracellular enzymes activity of bioflocs, and digestive enzymes activity and growth performance of Litopenaeus vannamei in zero-exchange culture tanks. Aquac Res 47(10):3307–3318CrossRefGoogle Scholar
  66. Wei Y, Liao SA, Wang A (2016) The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture 465:88–93. CrossRefGoogle Scholar
  67. Wickham, H (2016) Readxl: Read Excel Files. R package version 0.1.1. [online]
  68. Xu W-J, Morris TC, Samocha TM (2016) Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture 453:169–175. CrossRefGoogle Scholar
  69. Zhang N, Luo G, Tan H, Liu W, Hou Z (2016) Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-β-hydroxybutyric as a carbon source. Aquaculture 464:710–717. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Clarissa Vilela Figueiredo da Silva Campos
    • 1
    Email author
  • Renata da Silva Farias
    • 1
  • Suzianny Maria Bezerra Cabral da Silva
    • 2
  • William Severi
    • 3
  • Luis Otavio Brito
    • 4
  • Alfredo Olivera Gálvez
    • 1
  1. 1.Laboratório de Produção de Alimento Vivo, Departamento de Pesca e AquiculturaUniversidade Federal Rural de Pernambuco, UFRPERecifeBrazil
  2. 2.Laboratório de Sanidade de Animais AquáticosUniversidade Federal Rural de PernambucoRecifeBrazil
  3. 3.Laboratório de LimnologiaUniversidade Federal Rural de PernambucoRecifeBrazil
  4. 4.Laboratório de CarciniculturaUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations