Molecular techniques for the detection of bacterial zoonotic pathogens in fish and humans

  • Akram Farzadnia
  • Mohsen NaeemipourEmail author


Various diseases could be transmitted from aquatic species, especially fish, to humans, which is considered to be a major human health concern across the world. In recent decades, molecular techniques have been applied to examine and identify various bacterial species in fish farms. Molecular techniques are rapid, accurate, sensitive, cost-effective, and have the ability to identify specific pathogens without the need for conventional methods. Furthermore, molecular techniques are particularly useful for the detection of multiple species or in case of low template. This review study aimed to describe various molecular methods, including multiplex-polymerase chain reaction, high-resolution melting real-time, restriction fragment length polymorphism, random amplification of polymorphic DNA, nucleic acid sequence-based amplification, rolling circle amplification, fluorescence in-situ hybridization, microarray, and matrix-assisted laser desorption/ionization. In addition, we evaluated the biosensors used for the detection of zoonotic bacteria, such as Vibrio vulnificus, Vibrio cholerae, Listeria monocytogenes, Streptococcus iniae, Lactococcus garvieae, Aeromonas hydrophila, Edwardsiella tarda, Mycobacterium spp., Photobacterium damselae subsp. Damselae, and Pseudomonas fluorescens, which are transmitted from fish to humans. These bacteria are of great importance in the aquaculture industry and in terms of human health.


Zoonotic Bacteria Molecular techniques Aquatic species 


Funding information

This research project is financially supported by the Cellular and Molecular Research Center (grant number 95287).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not involve animal testing by any of the authors.


  1. Abayneh T, Colquhoun D, Sorum H (2012) Multi-locus sequence analysis (MLSA) of Edwardsiella tarda isolates from fish. Vet Microbiol 158(3):367–375CrossRefPubMedGoogle Scholar
  2. Al-Fatlawy H, Al-Ammar M (2013) Molecular study of Aeromonas hydrophila isolated from stool samples in Najaf (Iraq). Int J Microbiol Res 5(1):363–369CrossRefGoogle Scholar
  3. Aznar R, Ludwig W, Schleifer K-H (1993) Ribotyping and randomly amplified polymorphic DNA analysis of Vibrio vulnificus biotypes. Syst Appl Microbiol 16(2):303–309CrossRefGoogle Scholar
  4. Blake PA, Weaver RE, Hollis DG (1980) Diseases of humans (other than cholera) caused by vibrios. Annu Rev Microbiol 34(1):341–367CrossRefPubMedGoogle Scholar
  5. Bohmer A, Schildgen V, Lusebrink J, Ziegler S, Tillmann RL, Kleines M, Schildgen O (2009) Novel application for isothermal nucleic acid sequence-based amplification (NASBA). J Virol Methods 158(1):199–201Google Scholar
  6. Botella S, Pujalte MJ, Macian MC, Ferrus MA, Hernandez J, Garay E (2002) Amplified fragment length polymorphism (AFLP) and biochemical typing of Photobacterium damselae subsp. damselae. J Appl Microbiol 93(4):681–688CrossRefPubMedGoogle Scholar
  7. Boylan S (2011) Zoonoses associated with fish. Vet Clin North Am Exot Anim Pract 14(3):427–438CrossRefPubMedGoogle Scholar
  8. Cantas L, Suer K (2014) The important bacterial zoonoses in “one health” concept. Front Public Health 2:144–201CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chang CI, Wu CC, Cheng TC, Tsai JM, Lin KJ (2009) Multiplex nested-polymerase chain reaction for the simultaneous detection of Aeromonas hydrophila, Edwardsiella tarda, Photobacterium damselae and Streptococcus iniae, four important fish pathogens in subtropical Asia. Aquac Res 40(10):1182–1190CrossRefGoogle Scholar
  10. Chatterjee S, Haldar S (2012) Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J Marine Sci Res Dev S1:002. CrossRefGoogle Scholar
  11. Chiu TH, Kao LY, Chen ML (2013) Antibiotic resistance and molecular typing of Photobacterium damselae subsp. damselae, isolated from seafood. J Appl Microbiol 114(4):1184–1192CrossRefPubMedGoogle Scholar
  12. Deshmukh RA, Joshi K, Bhand S, Roy U (2016) Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiol Open 5(6):901–922CrossRefGoogle Scholar
  13. Dodson S, Maurer J, Shotts E (1999) Biochemical and molecular typing of Streptococcus iniae isolated from fish and human cases. J Fish Dis 22(5):331–336CrossRefGoogle Scholar
  14. Fykse EM, Skogan G, Davies W, Olsen JS, Blatny JM (2007) Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification. Appl Environ Microbiol 73(5):1457–1466CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gauri S, Abidin ZZ, Kamuri MF, Mahdi MA, Md Yunus NA (2017) Detection of Aeromonas hydrophila using fiber optic microchannel sensor. J Sens 2017:1–10. CrossRefGoogle Scholar
  16. Gilbride KA, Lee D-Y, Beaudette L (2006) Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. J Microbiol Methods 66(1):1–20CrossRefPubMedGoogle Scholar
  17. Gonzalez SF, Krug MJ, Nielsen ME, Santos Y, Call DR (2004) Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J Clin Microbiol 42(4):1414–1419CrossRefPubMedPubMedCentralGoogle Scholar
  18. Haenen O, Evans J, Berthe F (2013) Bacterial infections from aquatic species: potential for and prevention of contact zoonoses. Rev Sci Tech 32(2):497–507CrossRefPubMedGoogle Scholar
  19. Han HJ, Jung SJ, Oh MJ, Kim DH (2011) Rapid and sensitive detection of Streptococcus iniae by loop-mediated isothermal amplification (LAMP). J Fish Dis 34(5):395–398CrossRefPubMedGoogle Scholar
  20. Herfehdoost GR, Kamali M, Javadi HR, Zolfagary D, Emamgoli A, Choopani A, Ghasemi B, Hossaini S (2014) Rapid detection of Vibrio Cholerae by polymerase chain reaction based on. J Appl Biotechnol Rep 1(2):59–62Google Scholar
  21. Hong S-R, Choi S-J, Do Jeong H, Hong S (2009) Development of QCM biosensor to detect a marine derived pathogenic bacteria Edwardsiella tarda using a novel immobilisation method. Biosens Bioelectron 24(6):1635–1640CrossRefPubMedGoogle Scholar
  22. Horenstein S, Smolowitz R, Uhlinger K, Roberts S (2004) Diagnosis of Edwardsiella tarda infection in oyster toadfish (Opsanus tau) held at the marine resources center. Biol Bull 207(2):171–171CrossRefPubMedGoogle Scholar
  23. Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI (2012) Emerging Aeromonas species infections and their significance in public health. Sci World J 2012:1–13Google Scholar
  24. Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L (2004) Nanotechnology and biosensors. Biotechnol Adv 22(7):505–518CrossRefPubMedGoogle Scholar
  25. Jin D, Luo Y, Zhang Z, Fang W, Ye J, Wu F, Ding G (2012) Rapid molecular identification of Listeria species by use of real-time PCR and high-resolution melting analysis. FEMS Microbiol Lett 330(1):72–80CrossRefPubMedGoogle Scholar
  26. Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77(5):1723–1733CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jung M, Chang YH, Kim W (2010) A real-time PCR assay for detection and quantification of Lactococcus garvieae. J Appl Microbiol 108(5):1694–1701CrossRefPubMedGoogle Scholar
  28. Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770–789CrossRefPubMedPubMedCentralGoogle Scholar
  29. Le Monnier A, Abachin E, Beretti J-L, Berche P, Kayal S (2011) Diagnosis of Listeria monocytogenes meningoencephalitis by real-time PCR for the hly gene. J Clin Microbiol 49(11):3917–3923CrossRefPubMedPubMedCentralGoogle Scholar
  30. López JR, Navas JI, Thanantong N, de la Herran R, Sparagano OAE (2012) Simultaneous identification of five marine fish pathogens belonging to the genera Tenacibaculum, Vibrio, Photobacterium and Pseudomonas by reverse line blot hybridization. Aquaculture 324-325:33–38CrossRefGoogle Scholar
  31. Maruyama F, Tani K, Kenzaka T, Yamaguchi N, Nasu M (2006) Quantitative determination of free-DNA uptake in river bacteria at the single-cell level by in situ rolling-circle amplification. Appl Environ Microbiol 72(9):6248–6256CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mata A, Gibello A, Casamayor A, Blanco M, Dominguez L, Fernandez-Garayzábal J (2004) Multiplex PCR assay for detection of bacterial pathogens associated with warm-water streptococcosis in fish. Appl Environ Microbiol 70(5):3183–3187CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mehrabadi JF, Morsali P, Nejad HR, Fooladi AAI (2012) Detection of toxigenic Vibrio cholerae with new multiplex PCR. J Infect Public Health 5(3):263–267CrossRefPubMedGoogle Scholar
  34. Mohanty B, Sahoo P (2007) Edwardsiellosis in fish: a brief review. J Biosci 32(3):1331–1344CrossRefPubMedGoogle Scholar
  35. Negahdary M, Jafarzadeh M, Rahimzadeh R, Rahimi G, Dehghani H (2017) A DNA biosensor for molecular diagnosis of Aeromonas hydrophila using zinc sulfide nanospheres. J Sens Sens Syst 6(2):259–267CrossRefGoogle Scholar
  36. Nguyen T, Lim Y, Kim DH, Austin B (2016) Development of real-time PCR for detection and quantitation of Streptococcus parauberis. J Fish Dis 39(1):31–39CrossRefPubMedGoogle Scholar
  37. Novotny L, Dvorska L, Lorencova A, Beran V, Pavlik I (2004) Fish: a potential source of bacterial pathogens for human beings. A review. Veterinární Medicína 49(9):343–358CrossRefGoogle Scholar
  38. Ootsubo M, Shimizu T, Tanaka R, Sawabe T, Tajima K, Yoshimizu M, Ezura Y, Ezaki T, Oyaizu H (2002) Oligonucleotide probe for detecting Enterobacteriaceae by in situ hybridization. J Appl Microbiol 93(1):60–68CrossRefPubMedGoogle Scholar
  39. Park SB, Kwon K, Cha IS, Jang HB, Nho SW, Fagutao FF, Kim YK, Yu JE, Jung TS (2014) Development of a multiplex PCR assay to detect Edwardsiella tarda, Streptococcus parauberis, and Streptococcus iniae in olive flounder (Paralichthys olivaceus). J Vet Sci 15(1):163–166CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pate M, Jencic V, Zolnir-Dovc M, Ocepek M (2005) Detection of mycobacteria in aquarium fish in Slovenia by culture and molecular methods. Dis Aquat Org 64(1):29–35CrossRefPubMedGoogle Scholar
  41. Phung TN, Caruso D, Godreuil S, Keck N, Vallaeys T, Avarre JC (2013) Rapid detection and identification of nontuberculous mycobacterial pathogens in fish by using high-resolution melting analysis. Appl Environ Microbiol 79(24):7837–7845CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pourahmad F, Adams A, Thompson KD, Richards RH (2019) Identification of aquatic mycobacteria based on sequence analysis of the 16S-23S rRNA internal transcribed spacer region. J Med Microbiol 68(2):221–229CrossRefPubMedGoogle Scholar
  43. Puk K, Banach T, Wawrzyniak A, Adaszek Ł, Ziętek J, Winiarczyk S, Guz L (2018) Detection of Mycobacterium marinum, M. peregrinum, M. fortuitum and M. abscessus in aquarium fish. J Fish Dis 41(1):153–156CrossRefPubMedGoogle Scholar
  44. Pumera M, Sanchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sensors Actuators B Chem 123(2):1195–1205CrossRefGoogle Scholar
  45. Rahman M, Heng LY, Futra D, Ling TL (2017) Ultrasensitive biosensor for the detection of Vibrio cholerae DNA with polystyrene-co-acrylic acid composite nanospheres. Nanoscale Res Lett 12(1):474–486CrossRefPubMedPubMedCentralGoogle Scholar
  46. Raissy M (2017) Bacterial zoonotic disease from fish: a review. J Food Microbiol 4(2):15–27Google Scholar
  47. Rajabzadeh N, Naeemipour M, Seyedabadi M (2017) Multiplex PCR assay for the simultaneous detection of bacterial pathogens in rainbow trout. Aquacult Int 25:1569–1575CrossRefGoogle Scholar
  48. Ravelo C, Magarinos B, Lopez-Romalde S, Toranzo AE, Romalde JL (2003) Molecular fingerprinting of fish-pathogenic Lactococcus garvieae strains by random amplified polymorphic DNA analysis. J Clin Microbiol 41(2):751–756CrossRefPubMedPubMedCentralGoogle Scholar
  49. Saharan P, Duhan JS, Gahlawat SK (2015) Detection of Pseudomonas fluorescens from broth, water and infected tissues by loop-mediated isothermal amplification (LAMP) method. Afr J Biotechnol 14(14):1181–1185CrossRefGoogle Scholar
  50. Salati F, Meloni M, Fenza A, Angelucci G, Colorni A, Orru G (2010) A sensitive FRET probe assay for the selective detection of Mycobacterium marinum in fish. J Fish Dis 33(1):47–56CrossRefPubMedGoogle Scholar
  51. Savan R, Igarashi A, Matsuoka S, Sakai M (2004) Sensitive and rapid detection of edwardsiellosis in fish by a loop-mediated isothermal amplification method. Appl Environ Microbiol 70(1):621–624CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shi Y-H, Chen J, Li C-H, Lu X-J, Zhang D-M, Li H-Y, Zhao Z-X, Li M-Y (2012) Detection of bacterial pathogens in aquaculture samples by DNA microarray analysis. Aquaculture 338:29–35Google Scholar
  53. Silvester R, Alexander D, Antony AC, Hatha M (2017) GroEL PCR-RFLP–an efficient tool to discriminate closely related pathogenic Vibrio species. Microb Pathog 105:196–200CrossRefPubMedGoogle Scholar
  54. Tang W, Ranganathan N, Shahrezaei V, Larrouy-Maumus G (2019) MALDI-TOF mass spectrometry on intact bacteria combined with a refined analysis framework allows accurate classification of MSSA and MRSA. PLoS One 14:e0218951. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Terceti MS, Vences A, Matanza XM, Dalsgaard I, Pedersen K, Osorio CR (2018) Molecular epidemiology of Photobacterium damselae subsp. damselae outbreaks in marine rainbow trout farms reveals extensive horizontal gene transfer and high genetic diversity. Front Microbiol 9:2155CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tichoniuk M, Gwiazdowska D, Ligaj M, Filipiak M (2010) Electrochemical detection of foodborne pathogen Aeromonas hydrophila by DNA hybridization biosensor. Biosens Bioelectron 26(4):1618–1623CrossRefPubMedGoogle Scholar
  57. Trakhna F, Harf-Monteil C, Abdelnour A, Maaroufi A, Gadonna-Widehem P (2009) Rapid Aeromonas hydrophila identification by TaqMan PCR assay: comparison with a phenotypic method. Lett Appl Microbiol 49(2):186–190CrossRefPubMedGoogle Scholar
  58. Tsai M-A, Wang P-C, Yoshida T, Liaw L-L, Chen S-C (2013) Development of a sensitive and specific LAMP PCR assay for detection of fish pathogen Lactococcus garvieae. Dis Aquat Org 102(3):225–235CrossRefPubMedGoogle Scholar
  59. Ulrich RM (2004) Development of a sensitive and specific biosensor assay to detect Vibrio vulnificus in estuarine waters. Dissertation, University of South FloridaGoogle Scholar
  60. Vendrell D, Balcázar JL, Ruiz-Zarzuela I, De Blas I, Gironés O, Múzquiz JL (2006) Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis 29(4):177–198CrossRefPubMedGoogle Scholar
  61. Wei S, Zhao H, Xian Y, Hussain MA, Wu X (2014) Multiplex PCR assays for the detection of Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae with an internal amplification control. Diagn Microbiol Infect Dis 79(2):115–118CrossRefPubMedGoogle Scholar
  62. Woo P, Cain K (2013) Current and emerging diseases/disorders of fish in aquaculture. J Aquac Res Development.
  63. Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO (2014) Isothermal amplified detection of DNA and RNA. Mol BioSyst 10(5):970–1003CrossRefPubMedGoogle Scholar
  64. Zerihun MA, Hjortaas MJ, Falk K, Colquhoun DJ (2011) Immunohistochemical and Taqman real-time PCR detection of mycobacterial infections in fish. J Fish Dis 34(3):235–246CrossRefPubMedGoogle Scholar
  65. Zhao X, Lin C-W, Wang J, Oh DH (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24(3):297–312CrossRefPubMedGoogle Scholar
  66. Zhou Q-J, Wang L, Chen J, Wang RN, Shi YH, Li CH, Zhang DM, Yan XJ, Zhang YJ (2014) Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals. J Microbiol Methods 104:26–35CrossRefPubMedGoogle Scholar
  67. Zlotkin A, Eldar A, Ghittino C, Bercovier H (1998) Identification of Lactococcus garvieae by PCR. J Clin Microbiol 36(4):983–985PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cellular and Molecular Research CenterSabzevar University of Medical SciencesSabzevarIran

Personalised recommendations