Precision aquaculture: a short review on engineering innovations

  • 258 Accesses


Aquaculture is presented as a sustainable alternative to the consumption of wild fish, for example, reducing inputs (such as feed), optimizing outputs, and reducing pollution. Extending to the agricultural framework, in this context, different technologies are being used to diminish those environmental hazards, giving rise to the precision agriculture/aquaculture being this a management concept based on observing, measuring, and responding space/temporal variability of productions. The scope of the precision aquaculture is to apply control-engineering principles to the production, to direct farmers to a better monitoring, control, and documentation of biological processes in fish farms. The aim of this review is to show an overview (enriched by a terms mapping analysis) of the precision aquaculture engineering innovations, with some examples of commercial systems, even if most of them are not specifically addressed in the precision aquaculture framework, in terms of: computer vision for animal monitoring, environmental monitoring tools, and sensor network (i.e., wireless sensor network, and long-range), robotics, and finally data interpretation and decision tools (i.e., algorithms, Internet of Things, and Decision Support Systems). Over the Internet of Things, cyber-physical systems communicate and cooperate with each other and with humans in real-time both internally and across organizational services offered and used by participants of the value chain. To increase the production and ameliorate the fish product quality and animal welfare issues, it is becoming even more important to monitor and control the production process.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Aguzzi J, Costa C, Fujiwara Y, Iwase R, Ramirez-Llorda E, Menesatti P (2009) A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna. Sensors 9:8438–8455.

  2. Andreopoulou Z (2012) Green Informatics: ICT for green and sustainability. Agrárinformatika 3(2):1–8

  3. Andrewartha SJ, Elliott NG, McCulloch JW, Frappell PB (2015) Aquaculture sentinels: smart-farming with biosensor equipped stock. J Aquac Res Dev 7(1):1–4

  4. Anras MLB, Lagardère JP (2004) Measuring cultured fish swimming behaviour: first results on rainbow trout using acoustic telemetry in tanks. Aquaculture 240(1-4):175-186.

  5. AQ1 system (2017) Accessed on 10 July 2019

  6. Aqquatech (2011) Accessed 10 July 2019

  7. Atoum Y, Srivastava S, Xiaoming L (2015) Automatic feeding control for dense aquaculture fish tanks. IEEE Signal Process Lett 22(8):1089–1093.

  8. Ayub MZ, Kushairi S, Latif AA (2015) A new mobile robotic system for intensive aquaculture industries. J Appl Sci Agric 10(8):1–7

  9. Berckmans D (2014) Precision livestock farming technologies for welfare management in intensive livestock systems. Scientific and Technical Review of the Office International des Epizooties 33(1):189–196

  10. Blanchard EA, Loxton R, Rehbock V (2013) A computational algorithm for a class of non-smooth optimal control problems arising in aquaculture operations. Appl Math Comput 219(16):8738–8746.

  11. Bourke G, Stagnitti F, Mitchell B (1993) A decision support system for aquaculture research and management. Aquac Eng 12(2):111–123.

  12. Cadieux S, Lalonde F, Michaud F (2000) Intelligent system for automated fish sorting and counting. International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ, Takamatsu, Japan, pp 1279-1284.

  13. Carrera P, Churnside JH, Boyra G, Marques V, Scalabrin C, Uriarte A (2006) Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe. ICES J Mar Sci 63:1736–1750.

  14. Chang B, Zhang X (2013) Aquaculture monitoring system based on fuzzy-PID algorithm and intelligent sensor networks. In Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2013. IEEE, pp 385-388.

  15. Chavan MS, Patil MVP, Chavan S, Sana S, Shinde C (2018) Design and implementation of IOT based real time monitoring system for aquaculture using raspberry pi. Int J Recent Innov Trends Comput Commun 6(3):159–161

  16. Chen Y, Zhen Z, Yu H, Xu J (2017) Application of fault tree analysis and fuzzy neural networks to fault diagnosis in the Internet of Things (IoT) for aquaculture. Sensors 17(1):153.

  17. Churnside JH (2003) A comparison of lidar and echosounder measurements of fish schools in the Gulf of Mexico. ICES J Mar Sci 60(1):147–154.

  18. Costa C, Scardi M, Vitalini V, Cataudella S (2009) A dual camera system for counting and sizing Northern Bluefin Tuna (Thunnus thynnus; Linnaeus, 1758) stock, during transfer to aquaculture cages, with a semi automatic Artificial Neural Network tool. Aquaculture 291:161–167.

  19. Costa C, Schurr U, Loreto F, Menesatti P, Carpentier S (2019) Plant phenotyping research trends, a science mapping approach. Front Plant Sci 9:1933

  20. de Mattos BO, Nascimento Filho ECT, Barreto KA, Braga LGT, Fortes-Silva R (2016) Self-feeder systems and infrared sensors to evaluate the daily feeding and locomotor rhythms of Pirarucu (Arapaima gigas) cultivated in outdoor tanks. Aquaculture 457:118–123.

  21. Duarte S, Reig L, Oca J (2009) Measurement of sole activity by digital image analysis. Aquac Eng 41(1):22–27.

  22. Dupont C, Cousin P, Dupont S (2018) IoT for aquaculture 4.0 smart and easy-to-deploy real-time water monitoring with IoT. In 2018 Global Internet of Things Summit (GIoTS) (pp. 1-5). IEEE.

  23. Encinas C, Ruiz E, Cortez J, Espinoza A (2017) Design and implementation of a distributed IoT system for the monitoring of water quality in aquaculture. In Wireless Telecommunications Symposium (WTS), 2017. IEEE, pp 1-7.

  24. Espinosa-Faller FJ, Rendón-Rodríguez GE (2012) A ZigBee wireless sensor network for monitoring an aquaculture recirculating system. J Appl Res Technol 10(3):380–387

  25. Føre M, Frank K, Norton T, Svendsen E, Alfredsen JA, Dempster T, Eguiraun H, Watson W, Stahl A, Magne Sunde L, Schellewald C, Skøien KR, Alver MO, Berckmans D (2017a) Precision fish farming: a new framework to improve production in aquaculture. Biosyst Eng 173:176–193.

  26. Føre M, Frank K, Dempster T, Alfredsen JA, Høy E (2017b) Biomonitoring using tagged sentinel fish and acoustic telemetry in commercial salmon aquaculture: a feasibility study. Aquac Eng 78:163–172.

  27. Friedland KD, Ama-Abasi D, Manning M, Clarke L, Kligys G, Chambers RC (2005) Automated egg counting and sizing from scanned images: rapid sample processing and large data volumes for fecundity estimates. J Sea Res 54:307–316.

  28. Grubich JR, Rice AN, Westneat MW (2008) Functional morphology of bite mechanics in the great barracuda (Sphyraena barracuda). Zoology 111(1):16–29.

  29. Harun A, Ndzi DL, Ramli MF, Shakaff AYM, Ahmad MN, Kamarudin LM, Zakaria A, Yang Y (2012) Signal propagation in aquaculture environment for wireless sensor network applications. Prog Electromagn Res 131:477–494

  30. Kawabe R, Kawano T, Nakano N, Yamashita N, Hiraishi T, Naito Y (2003) Simultaneous measurement of swimming speed and tail beat activity of free-swimming rainbow trout Oncorhynchys mykiss using an acceleration data-logger. Fish Sci 69:959–965.

  31. Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M (2014) Industry 4.0. Bus Inf Syst Eng 6(4):239–242.

  32. Lee WP, Osman MA, Talib AZ, Ogier JM, Yahya K (2014) Tracking multiple fish in a single tank using an improved particle filter. Adv Comput Sci Appl 279:799–804.

  33. Liang J, Yang K, Xia M, Zhang X, Lei X, Zheng Y, Tan D (2006) Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems. J Opt 8(5):415–422

  34. Lindblom J, Lundström C, Ljung M, Jonsson A (2016) Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precis Agric 18(3):309–331.

  35. Liu X, Cheng L (2012) Wireless sensor network based on ZigBee in aquaculture. In Advances in Electronic Commerce, Web Application and Communication. Springer, Berlin, Heidelberg, pp 553-558.

  36. Liu YT, Lin BY, Yue XF, Cai ZX, Yang ZX, Liu WH, Huang SY, Lu LJ, Peng JW, Chen JY (2018) A solar powered long range real-time water quality monitoring system by LoRaWAN. In Wireless and Optical Communication Conference (WOCC), 2018 27th. IEEE, pp 1-2.

  37. Luna FDVB, de la Rosa Aguilar E, Naranjo JS, Jagüey JG (2017) Robotic System for Automation of Water Quality Monitoring and Feeding in Aquaculture Shadehouse. IEEE Trans Syst Man Cybern Syst Hum 47(7):1575–1589.

  38. Maggio E, Cavallaro A (2011) Video Tracking. John Wiley and Sons Ltd, Chichester, p 292

  39. Martinez-de Dios JR, Serna C, Ollero A (2003) Computer vision and robotics techniques in fish farms. Robotica 21(3):233–243.

  40. Mathiassen JR, Misimi E, Bondo M, Veliyulin E, Ostvik SO (2011) Trends in application of imaging technologies to inspection of fish and fish products. Trends Food Sci Technol 22:257–275.

  41. Mathisen BM, Haro P, Hanssen B, Björk S, Walderhaug S (2016) Decision support systems in fisheries and aquaculture: a systematic review. arXiv preprint arXiv:1611.08374

  42. Matsumoto J, Urakawa S, Takamura Y, Malcher-Lopes R, Hori E, Tomaz C, Ono T, Nishijo H (2013) A 3D-video-based computerized analysis of social and sexual interactions in rats. PLoS One 8(10):e78460.

  43. Melvin GD (2016) Observations of in situ Atlantic bluefin tuna (Thunnus thynnus) with 500-kHz multibeam sonar. ICES J Mar Sci 73(8):1975–1986.

  44. Menesatti P, Costa C, Antonucci F, Steri R, Pallottino F, Catillo G (2014) A low-cost stereovision system to estimate size and weight of live sheep. Comput Electron Agric 103:33–38.

  45. Nucci ME, Costa C, Scardi M, Cataudella S (2010) Preliminary observations on bluefin tuna (Thunnus thynnus, Linnaeus 1758) behaviour in captivity. J Appl Ichthyol 25:95–96.

  46. Ogunlela AO (2014) Development and Performance Evaluation of an Automatic Fish Feeder. In Montreal, Quebec Canada July 13–July 16, 2014. American Society of Agricultural and Biological Engineers, p 1. doi:

  47. Pallottino F, Steri R, Menesatti P, Antonucci F, Costa C, Figorilli S, Catillo G (2015) Comparison between manual and stereovision body traits measurements of Lipizzan horses. Comput Electron Agric 118:408–413.

  48. Pallottino F, Biocca M, Nardi P, Figorilli S, Menesatti P, Costa C (2018) Science mapping approach to analyze the research evolution on precision agriculture: world, EU and Italian situation. Precis Agric 19:1011–1026.

  49. Papadakis VM, Papadakis IE, Lamprianidou F, Glaropoulos A, Kentouri M (2012) A computer-vision system and methodology for the analysis of fish behaviour. J Aquac Eng 46:53–59.

  50. Parra L, Sendra S, García L, Lloret J (2018a) Design and deployment of low-cost sensors for monitoring the water quality and fish behaviour in aquaculture tanks during the feeding process. Sensors 18(3):750.

  51. Parra L, Lloret G, Lloret J, Rodilla M (2018b) Physical sensors for precision aquaculture: a review. IEEE Sensors J 18(10):3915–3923.

  52. Patullo BW, Jolley-Rogers G, Macmillan DL (2007) Video tracking in the extreme: video analysis for nocturnal underwater animal movement. Behav Res Ther 39(4):783–788.

  53. Pentair (2018) Accessed on 10 July 2019

  54. Pinkiewicz TH, Purser GJ, Williams RN (2011) A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: a case study using cage-held Atlantic salmon. Aquac Eng 45(1):20–27.

  55. Primavera JH (2006) Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast Manag 49(9–10):531–545.

  56. Ravalli A, Rossi C, Marrazza G (2017) Bio-inspired fish robot based on chemical sensors. Sensors Actuators B Chem 239:325–329.

  57. Reshma B, Kumar SS (2016) Precision aquaculture drone algorithm for delivery in sea cages. In Engineering and Technology (ICETECH), 2016 IEEE International Conference on. IEEE, pp 1264-1270.

  58. Ruff BP, Marchant JA, Frost AR (1995) Fish sizing and monitoring using a stereo image-analysis system applied to fish farming. Aquac Eng 14:155–173.

  59. Saberioon M, Gholizadeh A, Cisar P, Pautsina A, Urban J (2017) Application of machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues. Rev Aquac 9(4):369–387.

  60. Shi B, Sreeram V, Zhao D, Duan S, Jiang J (2018) A wireless sensor network-based monitoring system for freshwater fishpond aquaculture. Biosyst Eng 172:57–66.

  61. Simbeye DS, Yang SF (2014) Water quality monitoring and control for aquaculture based on wireless sensor networks. J Netw 9(4):840.

  62. Simbeye DS, Zhao J, Yang S (2014) Design and deployment of wireless sensor networks for aquaculture monitoring and control based on virtual instruments. Comput Electron Agric 102:31–42.

  63. Sintef (2019) Accessed on 10 July 2019

  64. Soliveres E, Poveda P, Estruch VD, Pérez-Arjona I, Puig V, Ordoñez P, Ramis J, Espinosa V (2017) Monitoring fish weight using pulseecho waveform metrics. Aquac Eng 77:125–131.

  65. Sowande OS, Sobola OS (2008) Body measurements of West African dwarf sheep as parameters for estimation of live weight. Trop Anim Health Prod 40(6):433–439.

  66. Stankovic J (2008) When sensor and actuator networks cover the world. ETRI J 30(5):627–633.

  67. Tanveer M, Balasubramanian S, Sivakumar M, Manimehalai N, Jagan P (2018) A technical review on feeders in aquaculture. Int J Fish Aquat Stud 6(4):305–309

  68. Torisawa S, Kadota M, Komeyama K, Suzuki K, Takagi T (2011) A digital stereo-video camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna, Thunnus orientalis, cultured in a net cage. Aquat Living Resour 24(2):107–112.

  69. van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538

  70. Viscido SV, Parrish JK, Grünbaum D (2004) Individual behaviour and emergent properties of fish schools: a comparison of observation and theory. Mar Ecol Prog Ser 273:239–249.

  71. Von Borstel FD, Suárez J, de la Rosa E, Gutiérrez J (2013) Feeding and water monitoring robot in aquaculture greenhouse. Ind Robot 40(1):10–19.

  72. Wallat GK, Luzuriaga DA, Balaban MO, Chapman FA (2002) Analysis of skin color development in live goldfish using a color machine vision system. N Am J Aquac 64:79–84.<0079:AOSCDI>2.0.CO;2

  73. XpertSea (2019) Accessed on 10 July 2019

  74. Xu J, Liu Y, Cui S, Miao X (2006) Behavioural responses of tilapia (Oreochromis niloticus) to acute fluctuations in dissolved oxygen levels as monitored by computer vision. Acquac Eng 35(3):207–217.

  75. Yang YS, Lee KH, Ji SC, Jeong SJ, Kim KM, Park SW (2011) Measurement of size and swimming speed of Bluefin tuna (Thunnus thynnus) using by a stereo vision method. J Korean Soc Fish Technol 47(3):214–221.

  76. Zhang Y, Hua J, Wang YB (2013) Application effect of aquaculture IOT system. In Applied Mechanics and Materials. Trans Tech Publications, Vol. 303, pp 1395-1401.

  77. Zion B (2012) The use of computer vision technologies in aquaculture–a review. Comput Electron Agric 88:125–132.

  78. Zion B, Doitch N, Ostrovsky V, Alchanatis V, Segev R, Barki A, Karplus I (2006) Ornamental fish fry counting by image processing. Agricultural Research Organization, Bet Dagan

  79. Zion B, Alchanatis V, Ostrovsky V, Bark IA, Karplus I (2007) Real-time underwater sorting of edible fish species. Comput Electron Agric 56:34–45.

  80. Zion B, Alchanatis V, Ostrovsky V, Barki A, Karplus I (2008) Classification of guppies’ (Poecilia reticulata) gender by computer vision. Aquac Eng 38(2):97–104.

Download references

Author information

Correspondence to Corrado Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antonucci, F., Costa, C. Precision aquaculture: a short review on engineering innovations. Aquacult Int 28, 41–57 (2020).

Download citation


  • Wireless sensor network
  • IoT
  • Decision Support System
  • Computer vision