Aquaculture International

, Volume 27, Issue 5, pp 1151–1174 | Cite as

Recent progress in European percid fish culture production technology—tackling bottlenecks

  • Tomas PolicarEmail author
  • Fabian J. Schaefer
  • Edson Panana
  • Stefan Meyer
  • Stefan Teerlinck
  • Damien Toner
  • Daniel Żarski
European Percid Fish Culture


Eurasian perch (Perca fluviatilis) and pikeperch (Sander lucioperca) have been identified as candidates for production in aquaculture with the potential to deliver products of high quality and value and associated market acceptance. Current aquaculture production of these species predominately targets niche, premium markets, and its up-scaling is still limited due to several bottlenecks. This paper summarizes the most important and recent technological aspects and innovations regarding broodstock management, controlled reproduction, larval and early juvenile stages, nursery, and grow-out culture including methods for the improvement of growth and production in percid fishes. This review study also attempts to identify and outline further prospects and challenges for the future development of the percid aquaculture sector in Europe.


Broodstock management Eurasian perch Hatchery Innovation Larviculture Perca fluviatilis Pikeperch Production Reproduction Sander lucioperca 


Funding information

The study was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic, project Biodiversity n. CZ.02.1.01/0.0/0.0/16_025/0007370 and also by the Ministry of Agriculture of the Czech Republic, project NAZV n. QK1820354.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This article does not contain any studies with animals performed by any of the authors.


  1. Adamek M, Teitge F, Jung-Schroers V, Heling M, Gela D, Piackova V, Kocour M, Steinhagen D (2018) Flavobacteria as secondary pathogens in carp suffering from koi sleepy disease. J Fish Dis 41:1631–1642Google Scholar
  2. Alavi SMH, Ciereszko A, Hatef A, Křišťan J, Dzyuba B, Boryshpolets S, Rodina M, Cosson J, Linhart O (2015) Sperm morphology, physiology, motility, and cryopreservation in Percidae. In: Kestemont P, Dąbrowski K, Summerfelt RC (eds) Biology and culture of percid fishes. Springer Netherlands, Dordrecht, pp 163–191Google Scholar
  3. Alix M (2016) Study of the embryogenesis variability in the Eurasian perch: development of alternative approaches. University of LorraineGoogle Scholar
  4. Alix M, Chardard D, Ledoré Y et al (2015) An alternative developmental table to describe non-model fish species embryogenesis: application to the description of the Eurasian perch (Perca fluviatilis L. 1758) development. Evodevo 6:39Google Scholar
  5. Baekelandt S, Redivo B, Mandiki SNM et al (2018) Multifactorial analyses revealed optimal aquaculture modalities improving husbandry fitness without clear effect on stress and immune status of pikeperch Sander lucioperca General and Comparative. Endocrinology 258:194–204Google Scholar
  6. Baras E, Kestemont P, Mélard C (2003) Effect of stocking density on the dynamics of cannibalism in sibling larvae of Perca fluviatilis under controlled conditions. Aquaculture 219:241–255Google Scholar
  7. Bernáth G, Bokor Z, Kása E, Várkonyi L, Hegyi Á, Kollár T, Urbányi B, Żarski D, Radóczi Ifj J, Horváth Á (2015a) Comparison of two different methods in the cryopreservation of Eurasian perch (Perca fluviatilis) sperm. Cryobiology 70:76–78Google Scholar
  8. Bernáth G, Żarski D, Krejszeff S, Palińska-Żarska K, Bokor Z, Król J, Kollár T, Kucharczyk D, Urbányi B, Horváth Á (2015b) Optimization of conditions for the cryopreservation of Eurasian perch (Perca fluviatilis Linnaeus, 1758) sperm. J Appl Ichthyol 31:94–98Google Scholar
  9. Bernáth G, Bokor Z, Żarski D, Várkonyi L, Hegyi Á, Staszny Á, Urbányi B, Radóczi Ifj J, Horváth Á (2016) Commercial-scale out-of-season cryopreservation of Eurasian perch (Perca fluviatilis) sperm and its application for fertilization. Anim Reprod Sci 170:170–177Google Scholar
  10. Bigarré L, Plassiart G, de Boisséson C, Pallandre L, Pozet F, Ledoré Y, Fontaine P, Lieffrig F (2017) Molecular investigations of outbreaks of Perch perhabdovirus infections in pike-perch. Dis Aquat Org 127:19–27Google Scholar
  11. Blecha M, Kristan J, Samarin AM, Rodina M, Policar T (2015) Quality and quantity of pikeperch (Sander lucioperca) spermatozoa after varying cold water treatments. J Appl Ichthyol 31(Suppl. 2):75–78Google Scholar
  12. Blecha M, Samarin AM, Křišťan J, Policar T (2016a) Benefits of hormone treatment of both sexes in semi-artificial reproduction of pikeperch (Sander lucioperca L.). Czech J Ani Sci 61:203–208Google Scholar
  13. Blecha M, Kristan J, Policar T (2016b) Adaptation of intensively reared pikeperch (Sander lucioperca L.) juveniles to pond culture and subsequent re-adaptation to a recirculation aquaculture system. Turk J Fish Aquat Sci 16:15–18Google Scholar
  14. Blecha M, Flajshans M, Lebeda I, Kristan J, Svacina P, Policar T (2016c) Triploidisation of pikeprch (Sander lucioperca), first success. Aquaculture 462:115–117Google Scholar
  15. Blecha M, Malinovskyi O, Veselý L, Křišťan J, Policar T (2019) Swim bladder inflation failure in pikeperch (Sander lucioperca) larvae in pond culture. Aquac Int.
  16. Blonk RJW, Komen J (2015) Genetic improvement of percids. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes—principles and practices. Springer, New York, pp 699–722Google Scholar
  17. Bobe J, Labbé C (2010) Egg and sperm quality in fish. Gen Comp Endocrinol 165:535–548Google Scholar
  18. Chen XW, Wang J, Qian L et al (2017) Domestication drive the changes of immune and digestive system of Eurasian perch (Perca fluviatilis). PLoS One 12:3Google Scholar
  19. Colchen T, Fontaine P, Ledore Y et al (2019) Intra-cohort cannibalism in early life stages of pikeperch. Aquac Res 50:915–924Google Scholar
  20. Demska-Zakęś K, Kowalska A, Zakęś Z (2003) The development of the swim bladder of pikeperch Sander lucioperca (L.) reared in intensive culture. Arch Pol Fish 11:45–55Google Scholar
  21. Douxfils J, Mandiki SNM, Mathieu C, Milla S, Kestemont P (2015) Chapter 29: Domestication and responses to stress. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes—principles and practices. Springer, Dordrecht, pp 743–760Google Scholar
  22. Egloff M (1996) Failure of swim bladder inflation of perch, Perca fluviatilis L found in natural populations. Aquat Sci 58(1):15–23Google Scholar
  23. Faeed M, Kermanshahi RK, Pourkazemi M et al (2016) Effect of the probiotic Entrococcus faecium on hematological and non-specific immune parameters and disease resistance in zander (Sander lucioperca). Iran J Fish Sci 15:1581–1592Google Scholar
  24. FAO (2019) Fishery Statistical Collections. Global Aquaculture Production. Visited 1 July, 2019
  25. FEAP (2017) Annual report 2014. Federation of European Aquacultrure Producers, Liege, p 36Google Scholar
  26. Fontaine P, Wang N, Hermelink B (2015) Chapter 3: Broodstock management and control of the reproduction cycle. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes—principles and practices. Springer, New York, pp 103–122Google Scholar
  27. Formicki K, Smaruj I, Szulc J, Winnicki A (2009) Microtubular network of the gelatinous egg envelope within the egg ribbon of European perch, Perca fluviatilis L. Acta Ichthyol Piscat 39:147–151Google Scholar
  28. Frankiewicz P, Dabrowski K, Martyniak A et al (1999) Cannibalism as a regulatory force of pike perch, Stizostedion lucioperca (L.), population dynamics in the lowland Sulejou reservoir (Central Poland). Hydrobiologia 408(409):47–55Google Scholar
  29. Frederick WG, Rosauer DR, Grzybowski M et al (2015) Chapter 26: Production of genetically defined perch broodstock and their selection for fast growth. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and Culture of percid fishes—principles and practices. Springer, New York, pp 691–697Google Scholar
  30. Geay F, Kestemont P (2015) Chapter22: Feeding and nutrition of percid fishes during ongrowing stages. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes—principles and practices. Springer, New York, pp 587–622Google Scholar
  31. Güralp H, Pocherniaieva K, Blecha M, Policar T, Pšenička M, Saito T (2016) Early embryonic development in pikeperch (Sander lucioperca) related to micromanipulation. Czech J Ani Sci 61:273–280Google Scholar
  32. Güralp H, Pocherniaieva K, Blecha M et al (2017a) Migration of primordial germ cells during late embryogenesis of pikeperch Sander lucioperca relative to blastomere transplantation. Czech J Ani Sci 62:121–129Google Scholar
  33. Güralp H, Pocherniaieva K, Blecha M, Policar T, Pšenička M, Saito T (2017b) Development, and effect of water temperature on develompent rate, of pikeperch Sander lucioperca embryos. Theriogenology 104:94–104Google Scholar
  34. Hamza N, Ostaszewska T, Kestemont P (2015) Chapter 8: Development and functionality of the digestive system in percid fishes early life stages. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes — principles and practices. Springer, New York, pp 239–264Google Scholar
  35. Härkönen L, Hyvärinen P, Mehtätalo L, Vainikka A (2017) Growth, survival and interspecific social learning in the first hatchery generation of Eurasian perch (Perca fluviatilis). Aquaculture 466:64–71Google Scholar
  36. Hermelink B, Kleiner W, Schulz C, Kloas W, Wuertz S (2017) Photo-thermal manipulation for the reproductive management of pikeperch Sander lucioperca. Aquac Int 25:1–20Google Scholar
  37. Höglund E, Bakke MJ, Øverli Ø, Winberg S, Nilsson GE (2005) Suppression of aggressive behaviour in juvenile Atlantic cod (Gadus morhua) by L-tryptophan supplementation. Aquaculture 249:525–531Google Scholar
  38. Hseu JR, Lu FI, Su HM, Wang LS, Tsai CL, Hwang PP (2003) Effects of exogenous tryptophan on cannibalism, survival and growth in juvenile grouper, Epinephelus coioides. Aquaculture 218:251–263Google Scholar
  39. Imentai A, Yanes-Roca C, Steinbach C et al (2019) Optimized application of rotifers Brachionus plicatilis for rearing pikeperch Sander lucioperca L. larvae. Aquac Int.
  40. Jarmołowicz S, Rożyński M, Kowalska A, Zakęś Z (2018) Growth in juvenile pikeperch (Sander lucioperca L.) stimulated with yeast, Saccharomyces cerevisiae, extract. Aquac Res 49:614–620Google Scholar
  41. Judycka S, Żarski D, Dietrich MA, Palińska-Żarska K, Karol H, Ciereszko A (2019) Standardized cryopreservation protocol of European perch (Perca fluviatilis) semen allows to obtain high fertilization rates with the use of frozen/thawed semen. Aquaculture 498:208–2016Google Scholar
  42. Kestemont P, Henrotte E (2015) Chapter 20: Nutritional requirements and feeding of broodstock and early life stages of Eurasian perch and pikeperch. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes—principles and practices. Springer, New York, pp 539–564Google Scholar
  43. Kestemont P, Mélard C (2000) Chapter 11 – Aquaculture. In: Craig JF (ed) Percid fishes. Systematics, ecology and exploitation. Blackwell Science, Oxford, pp 191–224Google Scholar
  44. Kestemont P, Mélard C, Fiogbe ED, Vlavonou R, Masson G (1996) Nutritional and animal husbandry aspects of rearing early life stages of Eurasian perch Perca fluviatilis. J Appl Ichthyol 12:157–165Google Scholar
  45. Kestemont P, Xu X, Hamza N et al (2007) Effects of weaning age and diet on pikeperch larviculture. Aquaculture 264:197–204Google Scholar
  46. Kestemont P, Rougeot C, Musil J et al (2008) Larval and juvenilie production. In: Rougeot C, Torner D (eds) Farming of Eurasian perch, special publication BIM no. 24, Dublin, Ireland, pp 30–41Google Scholar
  47. Kestemont P, Mélard C, Held JA, Dabrowski K (2015) Chapter 9: Culture methods of Eurasian perch and yellow perch early life stages. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes—principles and practices. Springer, New York, pp 265–293Google Scholar
  48. Khadher SB, Fontaine P, Milla S et al (2016) Genetic characterization and relatedness of wild and farmed Eurasian perch (Perca fluviatilis): possible implications for aquaculture practices. Aquac Rep 3:136–146Google Scholar
  49. Khendek A, Alix M, Viot S, Ledoré Y, Rousseau C, Mandiki R, Kestemont P, Policar T, Fontaine P, Milla S (2017) How does a domestication process modulate oogenesis and reproduction performances in Eurasian perch? Aquaculture 473:206–214Google Scholar
  50. Khendek A, Chakraborty A, Roche et al (2018) Rearing conditions and life history influence the progress of gametogenesis and reproduction performances in pikeperch males and females. Animal 12:2335–2346Google Scholar
  51. Kowalska A, Zakęś Z, Siwicki AK et al (2015) Impact of brewer’s yeast extract and levamisole in diets with vegetable oils on the growth, chemical composition, and immunological and biochemical blood parameters of pikeperch (Sander lucioperca). Czech J Ani Sci 60:498–508Google Scholar
  52. Kristan J, Stara A, Turek J et al (2012) Comparison of the effects of four anaesthetics on haematological and blood biochemical profiles in pikeperch (Sander lucioperca L.). Neuroendocrinol Lett 33:101–106Google Scholar
  53. Křišťan J, Stejskal V, Policar T (2012) Comparison of reproduction characteristics and broodstock mortality in farmed and wild Eurasian perch (Perca fluviatilis L.) females during spawning season under controlled conditions. Turk J Fish Aquat Sci 12:191–197Google Scholar
  54. Křišťan J, Alavi SMH, Stejskal V et al (2013) Hormonal induction of ovulation in pikeperch (Sander lucioperca L.) using human chorionic gonadotropin (hCG) and mammalian GnRH analogue. Aquac Int 21:811–818Google Scholar
  55. Kristan J, Stara A, Polgesek M et al (2014) Efficacy of different anaesthetics for pikeperch (Sander lucioperca L.) in relation to water temperature. Neuroendocrinol Lett 35:81–85Google Scholar
  56. Kristan J, Blecha M, Policar T (2016) Alcalase treatment for elimination of stickiness in pikeperch (Sander lucioperca L.) eggs under controlled conditions. Aquac Res 47:3998–4003Google Scholar
  57. Kristan J, Zarski D, Blecha M, Policar T, Malinovskyi O, Samarin AM, Palinska-Zarska K, Nowosad J, Krejszeff S, Kucharczyk D (2018) Fertilizing ability of gametes at different post-activation times and the sperm-oocyte-ratio in the artificial reproduction of pikeperch Sander lucioperca. Aquac Res 49:1383–1388Google Scholar
  58. Król J, Zakęś Z (2016) Effect of dietary L-tryptophan on cannibalism, survival and growth in pikeperch Sander lucioperca (L.) post-larvae. Aquac Int 24:441–451Google Scholar
  59. Król J, Dauchot N, Mandiki SNM et al (2015) Cannibalism in cultured perch, Perca fluviatilis (Actinopterygii: Perciformes: Percidaye) – implication of maternal influence, kinship, and sex ratio of progenies. Acta Ichthyol Piscat 45:65–73Google Scholar
  60. Król J, Żarski D, Bernáth G, Palińska-Żarska K, Krejszeff S, Długoński A, Horváth Á (2018) Effect of urine contamination on semen quality variables in Eurasian perch Perca fluviatilis L. Anim Reprod Sci 197:240–246Google Scholar
  61. Król J, Długoński A, Błażejewski M et al (2019) Effect of size sorting on growth, cannibalism, and survival in Eurasian perch Perca fluviatilis L. post-larvae. Aquac IntGoogle Scholar
  62. Kucharczyk D, Szkudlarek M, Targońska K et al (2007) Chapter 7: Egg fertilization and incubation. In: Kucharczyk D, Kestemont P, Mamcarz A (eds) Artificial reproduction of pikeperch. Poland, Mercurius Olsztyn, pp 51–57Google Scholar
  63. Kucharczyk D, Targońska K, Żarski D et al (2008) A review of the reproduction biotechnology for fish from the genus Leuciscus. Arch Polish Fish 16:319–340Google Scholar
  64. Lepič P, Buřič M, Hájíček J et al (2017) Adaptation to pelleted feed in pikeperch fingerlings: learning from the trainer fish over gradual adaptation from natural food. Aquat Living Resour 30:8Google Scholar
  65. Ljubobratović U, Kucska B, Feledi T et al (2015) Effect of weaning strategies on growth and survival of pikeperch, Sander lucioperca, larvae. Turk J Fish Aquat Sci 15:327–333Google Scholar
  66. Ljubobratović U, Kucska B, Sandor Z et al (2016) Effects of stocking density, feeding technique and vitamin C supplementation on the habituation on dry feed of pikeperch (Sander lucioperca) pond reared juveniles. Iran J Fish Sci 15:1337–1347Google Scholar
  67. Ljubobratović U, Peter G, Horvath Z et al (2017a) Reproductive performance of indoor-reared pikeperch (Sander lucioperca) females after wintering in outdoor earthen ponds. Aquac Res 48:4851–4863Google Scholar
  68. Ljubobratović U, Csengeri I, Kucska B et al (2017b) Comparison of the procedures for adhesiveness removal in pikeperch (Sander lucioperca) eggs with special emphasis on the effect of tannic acid. Turk J Fish Aquat Sci 17:461–469Google Scholar
  69. Ljubobratović U, Peter G, Horvath Z (2018) Effect of parental origin on dry feed habituation and Intensive on-growing results in pikeperch (Sander lucioperca) offspring. Turk J Fish Aquat Sci 18:425–433Google Scholar
  70. Ljubobratović U, Péter G, Alvestad R, Horváth Z, Rónyai A (2019) Alcalase enzyme treatment affects egg incubation and larval quality in pikeperch (Sander lucioperca). Aquac Int.
  71. Łuczyński J, Szkudlarek M, Szczerbowski A et al (2007) Chapter3: Spawners and handling. In: Kucharczyk D, Kestemont P, Mamcarz A (eds) Artificial reproduction of pikeperch. Poland, Mercurius Olsztyn, pp 17–22Google Scholar
  72. Lund I, Kertaoui N, Izquierdo MS et al (2018) The importance of phospholipids combined with long-chain PUFA in formulated diets for pikeperch (Sander lucioperca) larvae. Br J Nutr 120:628–644Google Scholar
  73. Lund I, Rodriguez C, Izquierdo MS et al (2019) Influence of salinity and linoleic or alpha-linolenic acid based diets on ontogenetic development and metabolism of unsaturated fatty acids in pike perch larvae (Sander lucioperca). Aquaculture 500:550–561Google Scholar
  74. Madenjian CP (2015) Bioenergetics modeling of percid fishes. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes – principles and practices. Springer, New York, pp 369–397Google Scholar
  75. Malinovskyi O, Veselý L, Blecha M, Křišťan J, Policar T (2018) The substrate selection and spawning behavior of pikeperch Sander lucioperca L. broodstock under pond conditions. Aquac Res 49:3541–3547Google Scholar
  76. Malinovskyi O, Kolářová J, Blecha M, Stará A, Velíšek J, Křišťan J, Policar T (2019) Behavior and physiological status of pond-cultured pikeperch (Sander lucioperca) broodstock effected by sexual interactions throughout semi-artificial reproduction. Aquac Int.
  77. Mattila J, Koskela J (2018) Effect of feed pellet size on production parameters of pike-perch (Sander lucioperca). Aquac Res 49:586–590Google Scholar
  78. Mélard C, Baras E, Kestemont P (1995) Preliminary results of European perch (Perca fluviatilis) intensive rearing trials: effect of temperature and size grading on growth. Bull Fr Pȇch Piscic 336:19–27Google Scholar
  79. Mélard C, Baras E, Mary L et al (1996) Relationships between stocking density, growth, cannibalism and survival rate in intensively cultured larvae and juveniles of perch (Perca fluviatilis). Ann Zool Fenn 33:643–651Google Scholar
  80. Molnár T, Csuvar A, Benedek I et al (2018) Domestication affects exploratory behaviour of pikeperch (Sander lucioperca L.) during the transition to pelleted food. PLOS One 13:e0196118Google Scholar
  81. Olin M, Vainikka A, Roikonen T, Ruuhijärvi J, Huuskonen H, Kotakorpi M, Vesala S, Ala-Opas P, Tiainen J, Nurminen L, Lehtonen H (2018) Trait-related variation in the reproductive characteristics of female pikeperch (Sander lucioperca). Fish Manag Ecol 25:220–232Google Scholar
  82. Ostaszewska T, Dabrowski K, Czuminska K, Olech W, Olejniczak M (2005) Rearing of pike-perch larvae using formulated diets – first success with starter feeds. Aquac Res 36:1167–1176Google Scholar
  83. Ott A, Loffler J, Ahnelt H et al (2012) Early development of the postcranial skeleton of the pikeperch Sander lucioperca (Teleostei: Percidae) relating to developmental stages and growth. J Morphol 273:894–908Google Scholar
  84. Overton JL, Toner D, Policar T, Kucharczyk D (2015) Chapter 35: Commercial production: factors for success and limitations in European percid fish culture. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes—principles and practices. Springer, New York, pp 881–890Google Scholar
  85. Palińska-Żarska K, Krejszeff S, Łopata M et al (2019) Effect of water hardness, temperature, and tank wall color, on the effectiveness of swim bladder inflation and survival of Eurasian perch (Perca fluviatilis, L.) larvae reared under controlled conditions. Aquac Int
  86. Peterka J, Matěna J, Lipka J (2003) The diet and growth of larval and juvenile pikeperch (Stizostedion lucioperca (L.)): a comparative study of fishponds and a reservoir. Aquac Int 11:337–348Google Scholar
  87. Pimakhin A, Kouril J, Stejskal V et al (2015) The effect of geographical origin of perch (Perca fluviatilis L. 1758) populations on growth rates under natural and aquaculture conditions: a Review. J Appl Ichthyol 31:56–63Google Scholar
  88. Policar T, Adámek Z (2013) Preface. Aquac Int 21:737–738Google Scholar
  89. Policar T, Toner D, Alavi SMH et al (2008) Reproduction and spawning. In: Rougeot C, Toner D (eds) Farming of Eurasian perch, special publication BIM 24, Dublin, Ireland, pp 22–29Google Scholar
  90. Policar T, Stejskal V, Kristan J, Podhorec P, Svinger V, Blaha M (2013) The effect of fish size and density on the weaning success in pond-cultured pikeperch (Sander lucioperca L.) juveniles. Aquac Int 21:869–882Google Scholar
  91. Policar T, Samarin AM, Mélard C (2015) Chapter 16: Culture methods of Eurasian perch during ongrowing. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes—principles and practices. Springer, New York, pp 417–435Google Scholar
  92. Policar T, Křišťan J, Blecha M et al (2016a) Adaptation and culture of pikeperch (Sander lucioperca L.) juveniles in recirculating aquaculture aystem (RAS). Handbook FFPW USB, 141: 38 pGoogle Scholar
  93. Policar T, Blecha M, Křišťan et al (2016b) Comparison of production efficiency and quality of differently cultured pikeperch (Sander lucioperca L.) juveniles as a valuable product for ongrowing culture. Aquac Int 24:1607–1626Google Scholar
  94. Policar T, Malinovskyi O, Kristan J et al (2019) Post-spawning bath treatments to reduce morbidity and mortality of pond-cultured pikeperch (Sander lucioperca L.) broodstock. Aquac Int.
  95. Roche J, Zarski D, Khendek A et al (2018) D1, but not D2, dopamine receptor regulates steroid levels during the final stages of pikeperch gametogenesis. Animal 12:2587–2597Google Scholar
  96. Rougeot C (2015) Chapter 23: Sex and ploidy manipulation in percid fishes. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes—principles and practices. Springer, New York, pp 625–634Google Scholar
  97. Rougeot C, Mélard C (2008) Genetic improvement of growth. In: Rougeot C, Torner D (eds) Farming of Eurasian perch, special publication BIM no 24. Bord Iascaigh Mhara, Dublin, pp 42–51Google Scholar
  98. Rougeot C, Minet L, Prignon C et al (2003) Induce triploidy by heat shock in Eurasian perch, Perca fluviatilis. Aquat Living Resour 16:90–94Google Scholar
  99. Rożyński M, Ziomek E, Demska-Zakęś K et al (2016) Propiscin – a safe anaesthetic for pikeperch (Sander lucioperca). Acta Vet Hung 64:415–424Google Scholar
  100. Rożyński M, Kapusta A, Demska-Zakęś K et al (2017) The effects of surgically implanted dummy tags on the survival, growth performance, and physiology of pikeperch (Sander lucioperca). Fish Physiol Biochem 43:999–1010Google Scholar
  101. Rożyński M, Demska-Zakęś K, Sikora A et al (2018a) Impact of inducing general anesthesia with Propiscin (etomidate) on the physiology and health of European perch (Perca fluviatilis L.). Fish Physiol Biochem 44:927–937Google Scholar
  102. Rożyński M, Hopko M, Stawecki K, Zakęś Z (2018b) Impact of fish size, water temperature, and MS-222 concentration on inducing general anesthesia in pikeperch (Sander lucioperca). Aquac Res 49:2774–2781Google Scholar
  103. Samarin AM, Zarski D, Palinska Zarska K et al (2017) In vitro storage of unfertilized eggs of the Eurasian perch and its effect on egg viability rates and the occurrence of larval malformations. Animal 11:78–83Google Scholar
  104. Samarin AM, Samarin AM, Blecha M, Kristan J, Policar T (2019) In vitro storage of pikeperch (Sander lucioperca) eggs. Aquac Int.
  105. Sarosiek B, Dryl K, Kucharczyk D, Żarski D, Kowalski RK (2014) Motility parameters of perch spermatozoa (Perca fluviatilis L.) during short-term storage with antioxidants addition. Aquac Int 22:159–165Google Scholar
  106. Sarosiek B, Dryl K, Krejszeff S, Żarski D (2016) Characterization of pikeperch (Sander lucioperca) milt collected with a syringe and a catheter. Aquaculture 450:14–16Google Scholar
  107. Schaefer FJ, Overton JL, Wuertz S (2016a) Pikeperch Sander lucioperca egg quality cannot be predicted by total antioxidant capacity and mtDNA fragmentation. Anim Reprod Sci 167:117–124Google Scholar
  108. Schaefer FJ, Overton JL, Bossuyt J, Żarski D, Kloas W, Wuertz S (2016b) Management of pikeperch Sander lucioperca (Linnaeus, 1758) sperm quality after stripping. J Appl Ichthyol 32:1099–1106Google Scholar
  109. Schaefer FJ, Flues S, Meyer S, Peck MA (2017) Inter- and intra-individual variability in growth and food consumption in pikeperch, Sander lucioperca L., larvae revealed by individual rearing. Aquac Res 48:800–808Google Scholar
  110. Schaefer FJ, Overton JL, Kloas W, Wuertz S (2018a) Length rather than year-round spawning, affects reproductive performance of RAS-reared F-generation pikeperch, Sander lucioperca (Linnaeus, 1758) - Insights from practice. J Appl Ichthyol 34:617–621Google Scholar
  111. Schaefer FJ, Overton JL, Kruger A et al (2018b) Influence of batch-specific biochemical egg characteristics on embryogenesis and hatching success in farmed pikeperch. Animal 12:2327–2334Google Scholar
  112. Schaefer FJ, Tielmann M, Overton JL, Krüger A, Wuertz S, Kloas W, Schulz C, Meyer S (2019) Fate or independency: is batch-specific larval performance determined by egg traits? A case study in farmed pikeperch (Sander lucioperca). Aquac Int.
  113. Schaerlinger B, Żarski D (2015) Evaluation and Improvements of egg and larval quality in percid fishes. In: Kestemont P, Dabrowski K, Summerfelt CR (eds) Biology and culture of percid fishes. Springer, Netherlands, pp 193–223Google Scholar
  114. Steenfeldt S (2015) Chapter 10: Culture methods of pikeperch early life stages. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes – principles and practices. Springer, New York, pp 295–312Google Scholar
  115. Steenfeldt S, Fontaine P, Overton JL, Policar T, Toner D, Falahatkar B, Horváth Á, Khemis IB, Hamza N, Mhetli M (2015) Chapter 32: Current status of Eurasian percid fishes aquaculture. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes – principles and practices. Springer, New York, pp 817–841Google Scholar
  116. Steinberg K, Zimmermann J, Stiller KT, Meyer S, Schulz C (2017) The effect of carbon dioxide on growth and energy metabolism in pikeperch (Sander lucioperca). Aquaculture 481:162–168Google Scholar
  117. Steinberg K, Zimmermann J, Meyer S, Schulz C (2018a) Start-up of recirculating aquaculture systems: how do water exchange rates influence pikeperch (Sander lucioperca) and water composition? Aquac Eng 83:151–159Google Scholar
  118. Steinberg K, Zimmermann J, Stiller KT, Nwanna L, Meyer S, Schulz C (2018b) Elevated nitrate levels affect the energy metabolism of pikeperch (Sander lucioperca) in RAS. Aquaculture 497:405–413Google Scholar
  119. Stejskal V, Kouřil J, Policar T, Svobodová Z (2016) Splenic lipidosis in intensively cultured perch, Perca fluviatilis L. J Fish Dis 39:87–93Google Scholar
  120. Swirplies F, Wuertz S, Bassmann B et al (2019) Identification of molecular stress indicators in pikeperch Sander lucioperca correlating with rising water temperatures. Aquaculture 501:260–271Google Scholar
  121. Szczepkowski M, Zakęś Z, Szczepkowska B et al (2011) Effect of size sorting on the survival, growth and cannibalism in pikeperch (Sander lucioperca L.) larvae during intensive culture in RAS. Czech J Ani Sci 56:483–489Google Scholar
  122. Teletchea F, Fontaine P (2014) Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish Fish 15:181–195Google Scholar
  123. Tielmann M, Schulz C, Meyer S et al (2016) Self-grading of larval pike-perch (Sander lucioperca), triggered by positive phototaxis. Aquac Eng 72-73:13–19Google Scholar
  124. Tielmann M, Schulz C, Meyer S (2017) The effect of light intensity on performance of larval pike-perch (Sander lucioperca). Aquac Eng 77:61–71Google Scholar
  125. Toner D (2015) Chapter 34: The market for Eurasian perch. In: Kestemont P, Dabrowski K, Summerfelt RC (eds.) Biology and Culture of Percid Fishes – Principles and Practices. Springer New York, USA, pp 865–879Google Scholar
  126. Toomey L, Bláha M, Mauduit E, Vanina T, Baratçabal M, Ledoré Y, Vesala S, Fontaine P, Pasquet A, Lecocq T (2019) When behavioural geographic differentiation matters: inter-populational comparison of aggressiveness and group structure in the European perch. Aquac Int.
  127. Vanina T, Gebauer R, Toomey L, Stejskal V, Rutegwa M, Kouřil J, Bláha M, Lecocq T (2019) Genetic and aquaculture performance differentiation among wild allopatric populations of European perch (Percidae, Perca fluviatilis). Aquaculture 503:139–145Google Scholar
  128. Varju M, Műller T, Bokor Z et al (2018) The effects of excessive starvation on antioxidant defence and lipid peroxidation in intensively reared, commercial-siz pikeperch (Sander lucioperca L.). Egypt J Aquat Res 44:349–352Google Scholar
  129. Velíšek J, Stejskal V, Kouřil J, Svobodová Z (2009) Comparison of the effects of four anaesthetics on biochemical blood profiles of perch. Aquac Res 40:354–361Google Scholar
  130. Way K, Haenen O, Stone D, Adamek M, Bergmann SM, Bigarré L, Diserens N, el-Matbouli M, Gjessing MC, Jung-Schroers V, Leguay E, Matras M, Olesen NJ, Panzarin V, Piačková V, Toffan A, Vendramin N, Veselý T, Waltzek T (2017) Emergence of carp edema virus (CEV) and its significance to European common carp and koi Cyprinus carpio. Dis Aquat Org 126:155–166Google Scholar
  131. Winberg S, Øveril Ø, Lepage O (2001) Suppression of aggression in rainbow trout (Oncorhynchus mykiss) by dietary L-tryptophan. J Exp Biol 204:3867–3876Google Scholar
  132. Wolkers CPB, Serra M, Szawka RE, Urbinati EC (2014) The time course of aggressive behaviour in juvenile matrinxa˜ Brycon amazonicus fed with dietary L-tryptophan supplementation. J Fish Biol 84:45–57Google Scholar
  133. Wysujack K, Drahotta A (2017) Low effect of different feeding regimes on growth and feed conversion efficiency of juvenile Eurasian perch (Perca fluviatilis). Aquac Res 48:5166–5170Google Scholar
  134. Xu ZC, Li CJ, Ling QF et al (2017) Early development and the point of no return in pikeperch (Sander lucioperca L.) larvae. Chin J Oceanol Limnol 35:1493–1500Google Scholar
  135. Yanes-Roca C, Mráz J, Born-Torrijos A, Holzer AS, Imentai A, Policar T (2018) Introduction of rotifers (Brachionus plicatilis) during pikeperch first feeding. Aquaculture 497:260–268Google Scholar
  136. Zachary FS, Höök TO (2015) Environmental biology of percid fishes. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes – principles and practices. Springer, New York, pp 61–100Google Scholar
  137. Zakęś Z (2012) Cultured Aquatic Species Information Programme. Sander lucioperca. Cultured Aquatic Species Information Programme. FAO Fisheries and Aquaculture Department [online]. Rome Italy. Accessed 14 April 2019
  138. Zakęś Z, Demska-Zakęś K (2009) Controlled reproduction of pikeperch Sander lucioperca (L.): a review. Arch Pol Fish 17:153–170Google Scholar
  139. Zakęś Z, Szczepkowski M, Partyka K, Wunderlich K (2013) Effect of gonadotropin hormonal stimulation on out-of-season propagation success of different year classes of indoor-reared pikeperch (Sander lucioperca (L.)). Aquac Int 21:801–810Google Scholar
  140. Zakęś Z, Kapusta A, Hopko M, Szczepkowski M, Kowalska A (2015) Growth, survival and tag retention in juvenile pikeperch (Sander lucioperca) in laboratory conditions. Aquac Res 46:1276–1280Google Scholar
  141. Zakęś Z, Rożyński M, Demska-Zakęś K (2019) Effect of PIT tagging on hematology and plasma composition of juvenile pikeperch (Sander lucioperca (L.)). Aquac Int.
  142. Żarski D, Bokor Z, Kotrik L, Urbanyi B, Horváth A, Targońska K, Krejszeff S, Palińska K, Kucharczyk D (2011) A new classification of a preovulatory oocyte maturation stage suitable for the synchronization of ovulation in controlled reproduction of Eurasian perch Perca fluviatilis L. Reprod Biol 11:194–209Google Scholar
  143. Żarski D, Horváth Á, Kotrik L, Targońska K, Palińska K, Krejszeff S, Bokor Z, Urbányi B, Kucharczyk D (2012a) Effect of different activating solutions on the fertilization ability of Eurasian perch, Perca fluviatilis L., eggs. J Appl Ichthyol 28:967–972Google Scholar
  144. Żarski D, Krejszeff S, Palińska K, Targońska K, Kupren K, Fontaine P, Kestemont P, Kucharczyk D (2012b) Cortical reaction as an egg quality indicator in artificial reproduction of pikeperch, Sander lucioperca. Reprod Fertil Dev 24:843Google Scholar
  145. Żarski D, Kucharczyk D, Targońska K, Palińska K, Kupren K, Fontaine P, Kestemont P (2012c) A new classification of pre-ovulatory oocyte maturation stages in pikeperch, Sander lucioperca (L.), and its application during artificial reproduction. Aquac Res 43:713–721Google Scholar
  146. Żarski D, Targońska K, Kaszubowski R, Kestemont P, Fontaine P, Krejszeff S, Kupren K, Kucharczyk D (2013) Effect of different commercial spawning agents and thermal regime on the effectiveness of pikeperch, Sander lucioperca (L.), reproduction under controlled conditions. Aquac Int 21:819–828Google Scholar
  147. Żarski D, Horváth A, Held JA, Kucharczyk D (2015a) Artificial reproduction of percid fishes. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes – principles and practices. Springer New York, USA, pp 123–161Google Scholar
  148. Żarski D, Krejszeff S, Kucharczyk D, Palińska-Żarska K, Targońska K, Kupren K, Fontaine P, Kestemont P (2015b) The application of tannic acid to the elimination of egg stickiness at varied moments of the egg swelling process in pikeperch, Sander lucioperca (L.). Aquac Res 46:324–334Google Scholar
  149. Żarski D, Horváth Á, Bernáth G, Krejszeff S, Radóczi J, Palińska-Żarska K, Bokor Z, Kupren K, Urbányi B, Żarski D, Horváth Á, Bernáth G, Krejszeff S, Radóczi J, Palińska-Żarska K, Bokor Z, Kupren K, Urbányi B (2017a) Evaluation of gamete quality. In: Controlled reproduction of wild Eurasian perch - a hatchery manual. Springer International Publishing, Cham, pp 61–72Google Scholar
  150. Żarski D, Bernáth G, Król J, Cejko BI, Bokor Z, Palińska-Żarska K, Milla S, Fontaine P, Krejszeff S (2017b) Effects of hCG and salmon gonadoliberine analogue on spermiation in the Eurasian perch (Perca fluviatilis ). Theriogenology 104:179–185Google Scholar
  151. Żarski D, Palińska-Żarska K, Łuczyńska J, Krejszeff S (2017c) The type of spawning agent affects the egg composition during out-of-season spawning but not during in-season spawning in Eurasian perch, Perca fluviatilis. Gen Comp Endocrinol 245:19–29Google Scholar
  152. Żarski D, Fontaine P, Roche J, Alix M, Blecha M, Broquard C, Król J, Milla S (2019) Time of response to hormonal treatment but not the type of a spawning agent affects the reproductive effectiveness in domesticated pikeperch, Sander lucioperca. Aquaculture 503:527–536Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in Ceske BudejoviceVodnanyCzech Republic
  2. 2.Department of Ecophysiology and AquacultureLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  3. 3.Inagro, Practical Research Aquaculture CenterRumbeke-BeitemBelgium
  4. 4.Institute of Animal Breeding and HusbandryChristian-Albrechts-University KielKielGermany
  5. 5.Bord Iascaigh MharaDún LaoghaireIreland
  6. 6.Department of Gametes and Embryo BiologyInstitute of Animal Reproduction and Food Research, Polish Academy of SciencesOlsztynPoland

Personalised recommendations