Advertisement

Aquaculture International

, Volume 27, Issue 5, pp 1435–1450 | Cite as

Multi-model inference as criterion to determine differences in growth patterns of distinct Crassostrea gigas stocks

  • F. J. Reynaga-Franco
  • E. A. Aragón-Noriega
  • J. M. Grijalva-Chon
  • R. Castro-Longoria
  • J. A. Arreola-Lizárraga
  • R. H. Barraza-Guardado
  • J. Chávez-VillalbaEmail author
Article
  • 70 Downloads

Abstract

Production of Crassostrea gigas in hatcheries may be affected by different factors influencing spat quality; this will be reflected during its cultivation in the field. The main indicator of quality is growth. Growth modeling is a form of determining individual growth patterns in bivalves. In this study, multi-model inference (MMI) and the Akaike information criterion (AIC) were employed to identify differences in growth patterns of distinct C. gigas stocks. The experiment used spat produced in four different hatcheries (A, B, C, and D), which were cultivated under identical conditions. The stocks showed similar growth patterns but the best growth models to describe every case were different; hatchery A—von Bertalanffy (AIC = − 15.27), hatchery B—Schnute model case 3 (AIC = − 0.46), and hatcheries C and D—Schnute model case 1 (AIC = 233.4 and − 73.3, respectively). According to the models, oysters from hatchery B did not reach their maximum growth while the rest did it. Differences may be attributed to stock origin while the spat quality seems associated with production protocols. Results showed that growth patterns of C. gigas can be variable under the same cultivation conditions but the differences are difficult to detect. We demonstrated that the only way to find such differences was via MMI, and this approach should be used for any aquaculture resource.

Keywords

Akaike information criterion Epigenetics Hatchery Oyster culture Spat Temperature 

Notes

Acknowledgments

Thanks to Martín Acedo-Valdez (UNISON), Víctor Vera and Francisco Hoyos-Chairez (CREMES), Edgar Alcántara-Razo, and Andrés Hernández-Ibarra (CIBNOR), for their logistic support in the field.

Funding information

This study was funded by the Fundación Produce Sonora (project 898-1) with additional support from CIBNOR (project 900-721). Reynaga-Franco, F., was a recipient of a fellowship from CONACYT Mexico.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

References

  1. Aragón-Noriega EA (2013) Modelación del crecimiento individual del callo de hacha Atrina maura (Bivalvia: Pinnidae) a partir de la inferencia multi modelo. Rev Biol Trop 61:1167–1174CrossRefGoogle Scholar
  2. Barraza-Guardado RH, Chávez-Villalba J, Atilano-Silva H, Hoyos-Chairez F (2009) Seasonal variation in the condition index of Pacific oyster postlarvae (Crassostrea gigas) in a land-based nursery in Sonora, Mexico. Aquac Res 40:118–128CrossRefGoogle Scholar
  3. Barton A, Waldbusser GG, Feely RA, Weisberg SB, Newton JA, Hales B, Cudd S, Eudeline B, Langdon CJ, Jefferds I, King T, Suhrbier A, McLaughlin K (2015) Impacts of coastal acidification on the Pacific northwest shellfish industry and adaptation strategies implemented in response. Oceanography 28(2):146–159CrossRefGoogle Scholar
  4. Buestel D, Ropert M, Prou J, Goulletquer P (2009) History, status, and future of oyster culture in France. J Shellfish Res 28:813–820CrossRefGoogle Scholar
  5. Burge CA, Judah LR, Conquest LL, Griffin FJ, Cheney DP, Suhrbier A, Vadopalas B, Olin PG, Renault T, Friedman CS (2007) Summer seed mortality of the Pacific oyster, Crassostrea gigas Thunberg grown in Tomales Bay, California, USA: the influence of oyster stock, planting time, pathogens, and environmental stressors. J Shellfish Res 26:163–172CrossRefGoogle Scholar
  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New YorkGoogle Scholar
  7. Cáceres-Martínez J, Ramírez-Gutiérrez S, Vásquez-Yeomans R, Macías-Montes de Oca P (2004) Reproductive cycle and mortality of the Japanese oyster Crassostrea gigas cultured in Bahía Falsa, Baja California, Mexico. J Shellfish Res 3:795–801Google Scholar
  8. Castro-Longoria R, Grijalva-Chon J (1991) Variabilidad espacio-temporal de nutrientes y seston en la laguna costera La Cruz, Sonora. Cienc Mar 17:83–97CrossRefGoogle Scholar
  9. Chávez-Villalba J (2014) Cultivo de ostión Crassostrea gigas: Análisis de 40 años de actividades en México. Hidrobiológica 24:175–190Google Scholar
  10. Chávez-Villalba J, Aragón-Noriega E (2015) Modeling the individual growth of the Cortez oyster Crassostrea corteziensis (Bivalvia: Ostreidae) from central Gulf of California. Cah Biol Mar 56:231–236Google Scholar
  11. Chávez-Villalba J, Villelas-Ávila F, Cáceres-Martínez C (2007) Reproduction, condition and mortality of the Pacific oyster Crassostrea gigas (Thunberg) in Sonora, Mexico. Aquac Res 38:268–278CrossRefGoogle Scholar
  12. Corporeau C, Vanderplancke G, Boulais M, Suquet M, Quéré C, Boudry P, Huvet A, Madec S (2012) Proteomic identification of quality factors for oocytes in the Pacific oyster Crassostrea gigas. J Proteome 75:5554–5563CrossRefGoogle Scholar
  13. Cruz-Vásquez R, Rodríguez-Domínguez G, Alcántara-Razo E, Aragón-Noriega EA (2012) Estimation of individual growth parameters of the Cortes geoduck Panopea globosa from the central Gulf of California using a multimodel approach. J Shellfish Res 31:725–732CrossRefGoogle Scholar
  14. Dégremont L, Bédier E, Soletchnik P, Ropert M, Huvet A, Moal J, Samain JF, Boudry P (2005) Relative importance of family, site, and field placement timing on survival, growth, and yield of hatchery-produced Pacific oyster spat (Crassostrea gigas). Aquaculture 249:213–229CrossRefGoogle Scholar
  15. Dégremont L, Ernande B, Bédier E, Boudry P (2007) Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). I. Estimation of genetic parameters for survival and growth. Aquaculture 262:41–53CrossRefGoogle Scholar
  16. Dégremont L, Bédier E, Boudry P (2010) Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). II. Response to selection for survival and its influence on growth and yield. Aquaculture 299:21–29CrossRefGoogle Scholar
  17. Dégremont L, Lamy JB, Pépin JF, Travers MA, Renault T (2015) New insight for the genetic evaluation of resistance to ostreid herpesvirus infection, a worldwide disease, in Crassostrea gigas. PLoS One 10(6):e0127917CrossRefGoogle Scholar
  18. Diederich S, Nehls G, Beusekom JV, Reise K (2005) Introduced Pacific oysters (Crassostrea gigas) in the northern Wadden Sea: invasion accelerated by warm summers? Helgol Mar Res 59:97–106CrossRefGoogle Scholar
  19. Dridi S, Romdhane MS, Elcafsi MH (2007) Seasonal variation in weight and biochemical composition of the Pacific oyster, Crassostrea gigas in relation to the gametogenic cycle and environmental conditions of the Bizert lagoon, Tunisia. Aquaculture 263:238–248CrossRefGoogle Scholar
  20. FAO (2005–2018) In: Texto de Helm MM (ed) Cultured aquatic species information programme Crassostrea gigas. Programa de información de especies acuáticas. Departamento de Pesca y Acuicultura de la FAO, Roma (13 April 2005). http://www.fao.org/fishery/culturedspecies/Crassostrea_gigas/es. Cited 17 January 2018
  21. Frias R, Segovia M (2010) Gonad development of the Japanese oyster Crassostrea gigas in a recirculating system: first step toward the development of conditioning and maturation protocols. J Shellfish Res 29:303–308CrossRefGoogle Scholar
  22. Friedman CS, Estes RM, Stokes NA, Burge CA, Hargove JS, Barber BJ, Elston RA, Burreson EM, Reece KS (2005) Herpes virus in juvenile Pacific oysters Crassostrea gigas from Tomales Bay, California, coincides with summer mortality episodes. Dis Aquat Org 63:33–41CrossRefGoogle Scholar
  23. Gárate-Lizárraga I, Poot-Delgado CA, Ramírez-Castillo ER, Páez-Hernández MH (2013) Proliferación de Pseudo-nitzschia brasiliana y P. cf. pseudodelicatissima (Bacillariophyceae) en el Estero Santa Cruz, norte del Golfo de California, México. Rev Biol Mar Oceanogr 48:393–399CrossRefGoogle Scholar
  24. Gasmi S, Bernard I, Pouvreau S, Maurer D, Schaal G, Ganthy F, Cominassi L, Allain G, Sautour B, David V (2017) Spatial patterns in the condition index of the wild Pacific oyster Crassostrea gigas in a macrotidal coastal ecosystem: influence of tidal processes and beyond. J Sea Res 119:28–36CrossRefGoogle Scholar
  25. Gavery MR, Roberts SB (2010) DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genomics 11:483CrossRefGoogle Scholar
  26. Gomes RB, Dybas PR, Silva FC, Sühnel S, Albuquerque MCP, Melo CMR (2018) Estimates of genetic parameters for growth and survival in Pacific oyster (Crassostrea gigas). Bol Inst Pesca 44(2):e337CrossRefGoogle Scholar
  27. Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new model of determining the value of life contingencies. Philos Trans R Soc Lond 115:513–583CrossRefGoogle Scholar
  28. Góngora-Gómez AM, Aragón-Noriega EA, Domínguez-Orozco AL, Villanueva-Fonseca BP (2017) Modeling the individual growth of the Pacific oyster Crassostrea gigas cultivated in the Gulf of California using the von Bertalanffy model. Rev Biol Mar Oceanogr 52:181–185CrossRefGoogle Scholar
  29. Grijalva-Chon JM, Izaguirre-Castro O, Castro-Longoria R, López-Torres MA, Hoyos-Chaires F (2013) Variabilidad genética en ADN microsatélite de un nuevo linaje de ostión (Crassostrea gigas) en Sonora. Biotecnia 15(1):12–18CrossRefGoogle Scholar
  30. Guo X, Ford SE, Zhang F (1999) Molluscan aquaculture in China. J Shellfish Res 18:19–31Google Scholar
  31. Haoui-Meslem N, Chávez-Villalba J, Alcántara-Razo E, Rebzani-Zahaf C (2017) Growth, condition and gametogenic activity of the Pacific oyster Crassostrea gigas in Algeria. Cah Biol Mar 58:153–161Google Scholar
  32. Helm MM, Bourne N, Lovatelli A (2004) Hatchery culture of bivalves: a practical manual. FAO Fisheries Technical Paper No. 471. FAO, RomeGoogle Scholar
  33. Jiang Q, Li Q, Yu H, Kong LF (2013) Genetic and epigenetic variation in mass selection populations of Pacific oyster Crassostrea gigas. Genes Genom 35:641–647CrossRefGoogle Scholar
  34. Katsanevakis S (2006) Modelling fish growth: model selection, multi-model inference and model selection uncertainty. Fish Res 81:229–235CrossRefGoogle Scholar
  35. Kong N, Li Q, Yu H, Kong LF (2015) Heritability estimates for growth-related traits in the Pacific oyster (Crassostrea gigas) using a molecular pedigree. Aquac Res 46:499–508CrossRefGoogle Scholar
  36. Li C, Wang J, Song K, Meng J, Xu F, Li L, Zhang G (2018) Construction of a high-density genetic map and fine QTL mapping for growth and nutritional traits of Crassostrea gigas. BMC Genomics 19:626CrossRefGoogle Scholar
  37. Lodeiros C, Rodríguez-Pesantes D, Márquez A, Revilla J, Chávez-Villalba J, Sonnenholzner S (2018) Suspended cultivation of the Pacific oyster Crassostrea gigas in the eastern tropical Pacific. Aquac Int 26:337–347CrossRefGoogle Scholar
  38. Miossec L, Le Deuff RM, Goulletquer P (2009) Alien species alert: Crassostrea gigas (Pacific oyster). ICES Coop Res Rep 299:42Google Scholar
  39. Mondol MR, Kim CW, Kang CK, Park SR, Noseworthy RG, Choi KS (2016) Growth and reproduction of early grow-out hardened juvenile Pacific oysters, Crassostrea gigas in Gamakman Bay, off the south coast of Korea. Aquaculture 463:224–233CrossRefGoogle Scholar
  40. Morales-Bojórquez E, Aragón-Noriega EA, Aguirre-Villaseñor H, Calderon-Aguilera LE, Zepeda-Benitez VY (2015) Selection of models to predict Panopea globosa growth: application of a mixture probability distribution function. J Shellfish Res 34:129–136CrossRefGoogle Scholar
  41. Nanbu R, Mizuno T, Sekiguchi H (2008) Post-settlement growth and mortality of brackishwater clam Corbicula japonica in the Kiso estuaries, central Japan. Fish Sci 74:1254–1268CrossRefGoogle Scholar
  42. Nel A, Pitcher G, Richoux N, Jackson S (2014) Culture environment and hatchery of origin influence growth, condition and feeding organ morphology in the Pacific oyster Crassostrea gigas in South Africa. Afr J Mar Sci 36:481–491CrossRefGoogle Scholar
  43. Neto RM, Zeni TO, Ludwig S, Horodesky A, Girotto MV, Castilho-Westphal GG, Ostrensky A (2013) Influence of environmental variables on the growth and reproductive cycle of Crassostrea (Mollusca, Bivalvia) in Guaratuba Bay, Brazil. Invertebr Reprod Dev 57:208–218CrossRefGoogle Scholar
  44. Parsons TR, Maitia Y, Lalli CM (1984) A manual of chemical and biological methods for sea water analysis. Pergamonn Press, Oxford, UKGoogle Scholar
  45. Pouvreau S, Bourles Y, Lefebvre S, Gangnery A, Alunno-Bruscia M (2006) Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. J Sea Res 56:156–167CrossRefGoogle Scholar
  46. Reynaga-Franco FJ, Grijalva-Chon JM, Castro-Longoria R, Barraza-Guardado RH, Arreola-Lizárraga JA, Chávez-Villalba J (2019) Biological performance of Crassostrea gigas stocks produced at different hatcheries and cultivated under same environmental conditions. Aquac Res 50:621–633Google Scholar
  47. Ricker WE (1975) Computation and interpretation of biological statistics of fish populations. Bull Fish Res Board Can 191:1–382Google Scholar
  48. Riviere G, He Y, Tecchio S, Crowell E, Gras M, Sourdaine P, Guo X, Favrel P (2017) Dynamics of DNA methylomes underlie oyster development. PLoS Genet 13(6):e1006807CrossRefGoogle Scholar
  49. Robert R, Gérard A (1999) Bivalve hatchery technology: the current situation for the Pacific oyster Crassostrea gigas and the scallop Pecten maximus in France. Aquat Living Resour 12:121–130CrossRefGoogle Scholar
  50. Roncarati A, Felici A, Magi GE, Bilandžić N, Melotti P (2017) Growth and survival of cupped oysters (Crassostrea gigas) during nursery and pregrowing stages in open sea facilities using different stocking densities. Aquac Int 25:1777–1785CrossRefGoogle Scholar
  51. Rondon R, Grunau C, Fallet M, Charlemagne N, Sussarellu R, Chaparro C, Montagnani C, Mitta G, Bachère AF, Cosseau C (2017) Effects of a parental exposure to diuron on Pacific oyster spat methylome. Environ Epigenetics 3(1):1–13CrossRefGoogle Scholar
  52. Samain JF, Boudry P, Dégremont L, Soletchnik P, Ropert M, Bédier E, Martin JL, Moal J, Mathieu M, Pouvreau S, Lambert C, Escoubas JM, Nicolas JL, Le Roux F (2004) Summer mortality in the Pacific oyster Crassostrea gigas, overview of 3-year results of the cooperative “MOREST” Project. J Shellfish Res 23:309–310Google Scholar
  53. Schäffer F, Zettler ML (2007) The clam siphon as indicator for growth indices in the soft-shell clam Mya arenaria. Helgol Mar Res 61:9–16CrossRefGoogle Scholar
  54. Schnute J (1981) A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci 38:1128–1140CrossRefGoogle Scholar
  55. Sicard MT, Maeda-Martínez AN, Lluch-Cota SE, Lodeiros C, Roldán-Carrillo LM, Mendoza-Alfaro R (2006) Frequent monitoring of temperature: an essential requirement for site selection in bivalve aquaculture in tropical–temperate transition zones. Aquac Res 37:1040–1049CrossRefGoogle Scholar
  56. Spencer B (2008) Molluscan shellfish farming. Wiley-Blackwell, HobokenGoogle Scholar
  57. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Bulletin no. 67, OttawaGoogle Scholar
  58. Troost K (2010) Causes and effects of a highly successful marine invasion: case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries. J Sea Res 64:145–165CrossRefGoogle Scholar
  59. Utting S, Spencer B (1991) The hatchery culture of bivalve mollusc larvae and juveniles. Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research, Lab Leaflet 68, LowestoftGoogle Scholar
  60. Valenzuela-Castillo A, Sánchez-Paz A, Castro-Longoria R, López-Torres MA, Grijalva-Chon JM (2015) Seasonal changes in gene expression and polymorphism in hsp70 in cultivated oysters (Crassostrea gigas) at extreme temperatures. Mar Environ Res 110:25–32CrossRefGoogle Scholar
  61. Wang J, Li Q, Zhong X, Song J, Kong L, Yu H (2018) An integrated genetic map based of EST-SNPs and QTL analysis of shell color traits in Pacific oyster Crassostrea gigas. Aquaculture 492:226–236CrossRefGoogle Scholar
  62. Zhu L, Li L, Liang Z (2009) Comparison of six statistical approaches in the selection of appropriate fish growth models. Chin J Oceanol Limnol 27:457–467CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • F. J. Reynaga-Franco
    • 1
  • E. A. Aragón-Noriega
    • 2
  • J. M. Grijalva-Chon
    • 1
  • R. Castro-Longoria
    • 1
  • J. A. Arreola-Lizárraga
    • 2
  • R. H. Barraza-Guardado
    • 1
  • J. Chávez-Villalba
    • 2
    Email author
  1. 1.Departamento de Investigaciones Científicas y TecnológicasUniversidad de SonoraHermosilloMexico
  2. 2.Centro de Investigaciones Biológicas del Noroeste (CIBNOR)GuaymasMexico

Personalised recommendations