Aquaculture International

, Volume 27, Issue 5, pp 1289–1299 | Cite as

Nursery culture of wild and hatchery-produced juveniles of the West Indian top shell, Cittarium pica, fed microalgal and artificial biofilms

  • L. A. VelascoEmail author
  • Y. Villarruel
  • B. Toro


Cittarium pica is an overexploited Caribbean top shell that is being produced at an experimental level by aquaculture for conservation purposes. To optimise nursery culture, the growth and survival of wild and hatchery-produced juveniles were assessed after feeding with different biofilm diets. The following three diets were tested over a 6-month period: (1) a microalgal biofilm of Nitzschia sp. and Tetraselmis chuii; (2) an artificial biofilm of dry seaweeds, Padina gymnospora and Laurencia obtusa, and the cyanobacterium Spirulina sp.; and (3) a mix of the microalgal and artificial biofilms. The biofilms were prepared and supplied on folded PVC plates, and treatments were administered in triplicated 10-L aquaria with down-welling systems at 25 ± 1 °C and a salinity of 36.5 ± 0.5 ppt. Higher growth rates were obtained in juveniles fed diets containing artificial biofilms, which had high protein and energy contents, whereas survival rates were higher in juveniles fed the mixed diet. The relatively high growth and survival values suggest that the nursery culture can be improved by feeding with the mix of microalgal and artificial biofilms and that the temporary translocation of wild juveniles to nursery conditions can be a tool for population enhancement.


Caribbean Early juveniles Laurencia Nitzschia Padina Spats Tegulidae Tetraselmis Top shell Gastropod 



The authors are grateful for the support of senior volunteer Tomohiro Imamura of the Japan Cooperation Agency (JICA) and the staff of the Group of Marine Mollusks at the University of Magdalena.

Funding information

This study was supported by the projects COLCIENCIAS 1117-521-28882 and FONCIENCIAS 022-2016, 0339-2018, and 0025-2019 and the Young Researcher Fellowship under COLCIENCIAS National Call No. 672 of 2014.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.


  1. Angell A, Pirozzi I, de Nys R et al (2012) Feeding preferences and the nutritional value of tropical algae for the abalone Haliotis asinina. PLoS One 7(6):1–10CrossRefGoogle Scholar
  2. Aquilino KM, Coulbourne ME, Stachowicz JJ (2012) Mixed species diets enhance the growth of two rocky intertidal herbivores. Mar Ecol Prog Ser 468:179–189. CrossRefGoogle Scholar
  3. Araya R, Bahamondes C, Barahona K et al (2010) Utilización de una biopelícula microalgal multiespecífica para optimizar la fijación larval y el crecimiento de abalón (Haliotis rufescens) en un criadero comercial. Rev Biol Mar Oceanogr 45(1):59–69CrossRefGoogle Scholar
  4. Ardila N, Navas GR, Reyes J (2002) Libro rojo de invertebrados marinos de Colombia. INVEMAR. Ministerio de Medio Ambiente, BogotáGoogle Scholar
  5. Association of Official Analytical Chemists (2000) The official methods of analysis, 17th edn. AOAC, GaithersburgGoogle Scholar
  6. Bell L (1992) Reproduction and larval development of the West Indian topshell, Cittarium pica (Trochidae), in the Bahamas. Bull Mar Sci 51(2):250–266Google Scholar
  7. Britz PJ, Hecht T (1997) Effect of dietary protein and energy level on growth and body composition of south African abalone, Haliotis midae. Aquaculture 156:195–210CrossRefGoogle Scholar
  8. Britz PJ, Hecht T, Knauer J et al (1994) The development of an artificial feed for Abalone farming. S Afr J Sci 90:7–8Google Scholar
  9. Brown MR, McCausland MA, Kowalski K (1998) The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture 165(3–4):281–293CrossRefGoogle Scholar
  10. Capinpin EC, Corre KG (1996) Growth rate of the Philippine abalone, Haliotis asinina fed an artificial diet and macroalgae. Aquaculture 144(1–3):81–89CrossRefGoogle Scholar
  11. Carrera S, Velasco LA, Barreto-Hernández A (2018) Potencial de microalgas bentónicas del Mar Caribe como alimento en maricultura. Rev Biol Mar Oceanogr 53(3):32–333Google Scholar
  12. Correa-Reyes JG, Sánchez-Saavedra MP, Viana MT et al (2009) Effect of eight benthic diatoms as feed on the growth of red abalone Haliotis rufescens postlarvae. J Appl Phycol 21:387–393CrossRefGoogle Scholar
  13. Cox TE, Murray SN (2006) Feeding preferences and the relationships between food choice and assimilation efficiency in the herbivorous marine snail Lithopoma undosum (Turbinidae). Mar Biol 148:1295–1306.
  14. Daume S (2007) Improvement and evaluation of greenlip abalone hatchery and nursery production. Final report to Fisheries Research and Development Corporation on Project No. 2003/203. Fisheries Research Contract Report No. 16, Department of Fisheries, Western AustraliaGoogle Scholar
  15. Daza Guerra CA, Martínez-Hernandez NJ, Narváez-Barandica JC (2018) Aspectos poblacionales del burgao Cittarium pica, (Gastropoda: Tegulidae) en el litoral rocoso de Santa Marta, Magdalena, Colombia. Rev Mex Biodivers 89:430–442. Google Scholar
  16. De la Peña MR, Bautista JI, Buen-Ursua SM et al (2010) Settlement, growth and survival of the Donkey’s ear abalone Haliotis asinina (Linne) in response to diatom diets and attachment substrate. Philipp J Sci 139(1):27–34Google Scholar
  17. Debrot A (1990a) Temporal aspects of population dynamics and dispersal behaviour of the West Indian topshell, Cittarium pica (L.) at selected sites in the Exuma Cays, Bahamas. Bull Mar Sci 47(2):431–437Google Scholar
  18. Debrot A (1990b) Survival, growth and fecundity of the West Indian topshell, Cittarium pica (Linnaeus) in various rocky intertidal habitats of the Exuma Cays, Bahamas. Veliger 33(4):363–361Google Scholar
  19. Dolorosa RG, Grant A, Gill JA (2013) Translocation of wild Trochus niloticus: prospects for enhancing depleted Philippine reefs. Rev Fish Sci 21:403–413. CrossRefGoogle Scholar
  20. Dyck M, Roberts R, Jeffs A (2010) Use of algal diets to aid early weaning in the abalone Haliotis iris. J Shellfish Res 29:613–620CrossRefGoogle Scholar
  21. Farías A, Garcı́a-Esquivel Z, Viana MT (2003) Physiological energetics of the green abalone, Haliotis fulgens, fed on a balanced diet. J Exp Mar Biol Ecol 289(2):263–276CrossRefGoogle Scholar
  22. Fleming AE, Van Bameveld RJ, Hone PW (1996) The development of artificial diets for abalone: a review and future directions. Aquaculture 140:5–53CrossRefGoogle Scholar
  23. García-Hoyos LM, Franco-Herrera A, Ramírez-Barón JS et al (2010) Dinámica océano-atmósfera y su influencia en la biomasa fitoplanctónica, en la zona costera del Departamento del Magdalena, Caribe colombiano. Bol Invest Mar Cost 39(2):307–335Google Scholar
  24. Gimin R, Lee CL (1997) Effects of different substrata on the growth rate of early juveniles Trochus niloticus (Mollusca: Gastropoda). In: Lee CL, Lynch PW (eds) Trochus: status, hatchery, practice and nutrition. ACIAR Proceedings, CamberraGoogle Scholar
  25. Gómez-Montes L, García-Esquivel Z, D’Abramo LR et al (2003) Effect of dietary protein:energy ratio on intake, growth and metabolism of juvenile green abalone Haliotis fulgens. Aquaculture 220(1–4):769–780CrossRefGoogle Scholar
  26. González-Araya R, Quillien V, Robert R (2013) The effects of eight single microalgal diets on sex-ratio and gonad development throughout European flat oyster (Ostrea edulis L.) conditioning. Aquaculture 400–401:1–5CrossRefGoogle Scholar
  27. Gordon N, Neori A, Shpigel M, Lee J, Harpaz S (2006) Effect of diatom diets on growth and survival of the abalone Haliotis discus hannai postlarvae. Aquaculture 252(2–4):225–233CrossRefGoogle Scholar
  28. Green AJ, Jones CL, Britz PJ (2011) Effect of dietary lipid level on growth and feed utilization in cultured South African abalone Haliotis midae L. fed diets with a constant protein-to-energy ratio. Aquac Res 42:1501–1508CrossRefGoogle Scholar
  29. Guillard R (1974) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Publishing Corp, New YorkGoogle Scholar
  30. Guzmán JM, Viana MT (1998) Growth of abalone Haliotis fulgens fed diets with and without fish meal, compared to a commercial diet. Aquaculture 165(3–4):321–331CrossRefGoogle Scholar
  31. Harada H, Kawasaki O (1982) The attractive effect of seaweeds based on the behavioral responses of young herbivorous abalone Haliotis discus. Bull Jpn Soc Sci Fish 48:617–621CrossRefGoogle Scholar
  32. Hayakawa J, Kawamura T, Ohashi S, Horii T, Watanabe Y (2010) Importance of epiphytic diatoms and fronds of two species of red algae as diets for juvenile Japanese turban snail Turbo cornutus importance of epiphytic diatoms and fronds of two species of red algae. J Shellfish Res 29(1):233–240. CrossRefGoogle Scholar
  33. Hayakawa J, Ohtsuchi N, Kawamura T, Kurogi H (2018) Ontogenetic habitat and dietary shifts in Japanese turban snail Turbo cornutus at Nagai, Sagami Bay. Japan. Fish Sci 84:201–209. CrossRefGoogle Scholar
  34. Hoang DH, Tuan VS, Hoa NX et al (2007) Experiments on using hatchery-reared Trochus niloticus juveniles for stock enhancement in Vietnam. SPC Trochus Inf Bull 13:13–18Google Scholar
  35. Kawamura T, Roberts RD, Nicholson CM (1998) A review of the feeding and growth of postlarval abalone. Aquaculture 160(1–2):81–88CrossRefGoogle Scholar
  36. Kirkendale L, Robertson-Anderson DV, Winberg PC (2010) Review on the use and production of algae and manufactured diets as feed for sea-based abalone aquaculture in Victoria. Shoalhaven Marine and Fresh Centre, University of Wollongong, VictoriaGoogle Scholar
  37. Knauer J, Britz P, Hecht T (1996) Comparative growth performance and digestive enzyme activity of juvenile South Africa abalone, Haliotis midae, fed on diatoms and practical diet. Aquaculture 140(1):75–85CrossRefGoogle Scholar
  38. Koike Y, Stott AE, Ahmed F et al (2011) Trials on new methods for seed culture in Japanese abalones. In: Ceccaldi HJ, Dekeyser I, Girault M, Stora G (eds) Global change: mankind-marine environment interactions. Springer, DordrechtGoogle Scholar
  39. Kruatrachue M, Sawatpeera S, Chitramvong Y et al (2004) Comparative growth performance of early juvenile Haliotis asinina fed various artificial diets. J Shellfish Res 23(1):197–203Google Scholar
  40. Lambrinidis G, Thinh JL, Renaud S (1996) Food preference of Trochus niloticus fed Algae from Darwin harbour. In: Lee CL, Lynch PW (eds) Trochus: status, hatchery practice and nutrition, hatchery practice and nutrition. Proceedings of a workshop held at Northern Territory University, CanberraGoogle Scholar
  41. Lee SM (2004) Utilization of dietary protein, lipid, and carbohydrate by abalone Haliotis discus hannai: a review. J Shellfish Res 23:1027–1030Google Scholar
  42. Leighton P (2008) Abalone hatchery manual. Aquaculture explained Nro 25. Aquaculture Development División, DublinGoogle Scholar
  43. Lemouellic S, Chauvet C (2008) Trochus niloticus (Linnae 1767) growth in Wallis Island. SPC Trochus Inf Bull 14:3–11Google Scholar
  44. López LM, Tyler PA, Viana MT (1998) The effect of temperature and artificial diets on growth rates of juvenile Haliotis tuberculata (Linnaeus, 1758). J Shellfish Res 17(3):657–662Google Scholar
  45. Mai K, Mercer JP, Donlon J (1995) Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. III. Response of abalone to various levels of dietary lipid. Aquaculture 134(1–2):66–80Google Scholar
  46. Minh N, Petpiroon DS, Jarayabhand P et al (2010) Growth and survival of abalone , Haliotis asinina Linnaeus 1758, reared in suspended plastic cages. Kasetsart J (Nat Sci) 44(4):621–630Google Scholar
  47. Moran AL (1997) Spawning and larval development of the black turban snail Tegula funebralis (Prosobranchia: Trochidae). Mar Biol 128:107–114CrossRefGoogle Scholar
  48. Najmudeen TM, Victor AC (2004) Seed production and juvenile rearing of the tropical abalone Haliotis varia Linnaeus 1758. Aquaculture 234(1–4):277–292CrossRefGoogle Scholar
  49. Onitsuka T, Kawamura T, Ohashi S, Iwanaga S, Horii T (2011) Growth and survival of juvenile abalone Haliotis diversicolor fed on brown macroalgal gametophytes , a potential alternative initial diet. Aquaculture 313:79–83. CrossRefGoogle Scholar
  50. Osorno-Arango A, Díaz JM (2006) Explotación, usos y estado actual de la cigua o burgao Cittarium pica (Mollusca: Gastropoda: Trochidae) en la costa continental del Caribe colombiano. Bol Invest Mar Cost 35:133–146Google Scholar
  51. Osorno-Arango A, Gil-Agudelo DL, Gómez-Lemos LA (2009) Plan de Investigacion para la Conservación de Cittarium pica (Linnaeus, 1758), Serie de publicaciones especiales nro, 16th edn. INVEMAR, Santa MartaGoogle Scholar
  52. Parker F, Davidson M, Freeman K et al (2007) Investigation of optimal temperature and light conditions for three benthic diatoms and their suitability to commercial scale nursery culture of abalone (Haliotis laevigata). J Shellfish Res 26(3):751–761CrossRefGoogle Scholar
  53. Randall HA (1964) A study of the growth and other aspects of the biology of the West Indian Topshell, Cittarium pica (Linnaeus). Bull Mar Sci Gulf Caribb 14(3):424–443Google Scholar
  54. Rico-Mora JP, Mancera JE, Guerra LA (2017) Ecología poblacional de Cittarium pica (Gastropoda : Trochidae) de San Andrés Isla , Reserva Internacional de Biósfera , Seaflower Ecología poblacional de Cittarium pica (Gastropoda : Trochidae) de San Andrés Isla, Reserva Internacional de Biósfera. Rev Biol Trop 65:1495–1506CrossRefGoogle Scholar
  55. Robertson R (2003) The edible West Indian “whelk” Cittarium pica (Gastropoda: Trochidae): natural history with new observations. Proc Acad Nat Sci Phila 153:27–47CrossRefGoogle Scholar
  56. Rosique J, Toro B, Marín JG et al (2008) Algunos lineamientos para la conservación de Cittarium pica en la costa Caribe del Darién colombiano. Bol Antropol Univ Antioquia 22:314–334Google Scholar
  57. Salas-Garza A, Parés-Sierra G, Gómez-Rigalt R, Carpizo-Ituarte E (2009) The larval development, metamorphosis and juvenile growth of the turban snail Lithopoma (Astraea) undosa (Wood , 1828) (Gastropoda: Turbinidae). J World Aquac Soc 40:460–471CrossRefGoogle Scholar
  58. Schmidt S, Vargas J, Wolff M (2002) Population ecology and fishery of Cittarium pica (Gastropoda:Trochidae) on the Caribbean coast of Costa Rica. Rev Biol Trop 50(3–4):1079–1090Google Scholar
  59. Stott A, Takeuchi T, Koike Y et al (2002) Using micro particle diets to replace diatoms for feeding postlarval abalone Haliotis discus discus (Reeve). Fish Sci 68:1088–1093CrossRefGoogle Scholar
  60. Stott A, Takeuchi T, Koike Y, Imada O (2003a) Settling and raising postlarval abalone Haliotis diversicolor supertexta (Lischke) on microparticulate diets embedded in a layer of alginate. Aquac Res 34:561–567CrossRefGoogle Scholar
  61. Stott A, Takeuchi T, Koike Y et al (2003b) The effect of three different application methods for an artificial micro particle diet on the survival and growth rate of post-larval abalone Haliotis discus discus (Reeve). Suisanzoshoku 51(2):197–203Google Scholar
  62. Stott AE, Takeuchi T, Koike Y et al (2004) An alternative culture system for the hatchery production of abalone without using live food. Aquaculture 236(1–4):341–360CrossRefGoogle Scholar
  63. Toledo-Agüero P, Viana MT (2009) Fatty acid composition of juvenile abalone (Haliotis tuberculata coccinea) fed formulated diets containing various n3 HUFA levels. Cienc Mar 35(1):101–112CrossRefGoogle Scholar
  64. Utting SD (1986) A preliminary study on growth of Crassostrea gigas larvae and spat in relation to dietary protein. Aquaculture 56(2):123–138CrossRefGoogle Scholar
  65. Velasco LA, Barros J (2017) Spawning and early development of the West Indian top shell, Cittarium pica (Linnaeus, 1758), under ex-situ conditions. Aquat Living Resour 30:22–32CrossRefGoogle Scholar
  66. Velasco LA, Barros J (2018) Experimental culture of larvae, post-larvae and juveniles of the West Indian top shell, Cittarium pica (Linnaeus, 1758). Aquac Res 49(4):1628–2637CrossRefGoogle Scholar
  67. Velasco LA, Barros J, Guerrero A (2009) Effect of the density on the growth and survival of the Caribbean scallops Argopecten nucleus and Nodipecten nodosus in suspended culture. Aquac Res 40:687–695CrossRefGoogle Scholar
  68. Velasco LA, Barros J, Trujillo C et al (2010) State of shellfish aquaculture on the Caribbean coast of Colombia and potential site for a regional hatchery facility. A Regional Shellfish Hatchery for the Wider Caribbean: Assessing Its Feasibility and Sustainability. FAO Regional Technical Workshop, KingstonGoogle Scholar
  69. Velasco LA, Carreño-Aguirre A, Toro B (2019) Effect of body size on the energetic physiology of the West Indian top shell Cittarium pica (Linnaeus, 1758). Lat Am J Aquat Res 47(2):xxx-xxx.
  70. Viana MT, Correa G, Lazo JP, Frías-Díaz R, Durazo-Beltrán E, Vasquez-Pelaez C (2007) Digestive physiology and metabolism of green abalone Haliotis fulgens from postlarvae to juvenile, fed three different diatoms. Aquaculture 271(1–4):449–460CrossRefGoogle Scholar
  71. Yassien MH, Mahmoud MA, Abdel-Razek FA et al (2012) Growth rate of the top shell Tectusdentatus (Forskål, 1775) under laboratory conditions. Two effects of food items. Blue Biotechnol J 1:231–243Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratorio de Moluscos y MicroalgasUniversidad del MagdalenaSanta MartaColombia
  2. 2.Departamento de Ciencias BiológicasUniversidad de CaldasManizalesColombia

Personalised recommendations