Advertisement

Aquaculture International

, Volume 27, Issue 2, pp 413–436 | Cite as

Effects of fish farming on macrophytes in temperate carp ponds

  • Kateřina FrancováEmail author
  • Kateřina Šumberová
  • Georg A. Janauer
  • Zdeněk Adámek
Article
  • 94 Downloads

Abstract

Anthropogenic impacts on carp pond environments have increased over the last 100–150 years in Central Europe. Present semi-intensive carp pond management combines natural food resources, supplementary feeding and additional intensification measures such as manuring, liming, and winter and summer drainage. Despite increased eutrophication and fish stock pressure, many carp ponds still serve as habitats for threatened biota, including macrophytes. Both the ecologically essential role of aquatic macrophytes and the impacts that reared fish may have on them have been repeatedly reported in the literature; however, information is scattered and there exists no multidisciplinary synthesis of knowledge of fish farming and plant interactions for European carp ponds. In this review, we show that macrophytes from different ecological groups have specific demands regarding optimal ecological conditions (e.g. pH and trophy level); hence, they can act as indicators of a water body’s ecological status. Nevertheless, the overall ecological ranges of many species (i.e. the limits enabling their survival) remain rather broad. Moreover, interactions between the different elements within carp pond ecosystems are complex and change rapidly, facilitating the co-existence of macrophytes with contradictory ecological demands. As the literature suggests, carp ponds may play a role in biodiversity protection that is just as important (or even more so) than that of natural wetlands. Sustainable, environmentally friendly carp pond management is undoubtedly the best means of preserving the unique natural and cultural value of these aquatic ecosystems for the future.

Keywords

Aquatic plants Biodiversity Fishponds Central Europe Pond management 

Notes

Acknowledgements

We would like to thank J. Vrba and J. Regenda for their helpful suggestions on an earlier version of the manuscript, fish farmers from companies across the Czech Republic, who shared their experience with us and gave us a lot of inspiration for our research, two anonymous reviewers for their valuable comments, and P. Franta for drawing Fig. 1.

Funding information

Elaboration of this paper was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the projects CENAKVA (No. CZ.1.05/2.1.00/01.0024), CENAKVA II (No. LO1205 under the NPU I program) and FISHPOND2014 (No. LD14045 under the COST CZ program); the Grant Agency of the University of South Bohemia in České Budějovice (No. 060/2016/Z), the Czech Science Foundation (No. 17-09310S and 14-36079G – Centre of Excellence PLADIAS) and the Czech Academy of Sciences (RVO 67985939).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with animals performed by any of the authors.

References

  1. Adamec L (1997) Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa. Aquat Bot 59:297–306CrossRefGoogle Scholar
  2. Adámek Z (2014) Hydrobiology in Fisheries. In: Adámek Z et al (eds) Applied Hydrobiology. University of South Bohemia, Faculty of Fisheries and Protection of Waters, Vodňany, pp 307–348Google Scholar
  3. Adámek Z, Maršálek B (2013) Bioturbation of sediments by benthic macroinvertebrates and fish and its implication for pond ecosystems: a review. Aquac Int 21:1–17CrossRefGoogle Scholar
  4. Adámek Z, Sanh TD (1981) The food of grass carp fry (Ctenopharyngodon idella) in southern Moravian fingerling ponds. Folia Zool 30:263–270Google Scholar
  5. Adámek Z et al (2003) Food competition between 2+ tench (Tinca tinca L.), common carp (Cyprinus carpio L.) and bigmouth buffalo (Ictiobus cyprinellus Val.) in pond polyculture. J Appl Ichthyol 19:165–169CrossRefGoogle Scholar
  6. Adámek Z et al (2012) Aquaculture in the Czech Republic in 2012: modern European prosperous sector based on thousand-year history of pond culture. World Aquacult 43:20–27Google Scholar
  7. Adámek Z, Mössmer M, Bauer C (2015) Current issues and principles of common carp (Cyprinus carpio) organic farming in Europe. An overview. Paper presented at the 7th international conference on Water & Fish, University of Belgrade, Belgrade, 10–12 June 2015Google Scholar
  8. Anton-Pardo M et al (2014) Natural diet of mirror and scaly carp (Cyprinus carpio) phenotypes in earth ponds. Folia Zool 63:229–237CrossRefGoogle Scholar
  9. Bacon C et al (2012) The social dimensions of sustainability and change in diversified farming systems. Ecol Soc 17:41CrossRefGoogle Scholar
  10. Badiou PHJ, Goldsborough LG (2015) Ecological impacts of an exotic benthivorous fish, the common carp (Cyprinus carpio L.), on water quality, sedimentation, and submerged macrophyte biomass in wetland mesocosms. Hydrobiologia 755:107–121CrossRefGoogle Scholar
  11. Barko JW, Smart RM (1981) Sediment-based nutrition of submersed macrophytes. Aquat Bot 10:339–352CrossRefGoogle Scholar
  12. Barko JW, Smart RM (1983) Effects of organic-matter additions to sediment on the crowth of aquatic plants. J Ecol 71:161–175CrossRefGoogle Scholar
  13. Bernhardt KG et al (2008) Comparison of two methods characterising the seed bank of amphibious plants in submerged sediments. Aquat Bot 88:171–177CrossRefGoogle Scholar
  14. Bican J et al (1986) Ecology of fishpond vegetation. In: Hejný S, Raspopov M, Květ J (eds) Studies on shallow lakes and ponds. Academia, Praha, pp 171–230Google Scholar
  15. Böckelmann J et al (2017) Fitness and growth of the ephemeral mudflat species Cyperus fuscus in river and anthropogenic habitats in response to fluctuating water-levels. Flora 234:135–149CrossRefGoogle Scholar
  16. Breukelaar AW et al (1994) Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshw Biol 32:113–121CrossRefGoogle Scholar
  17. Brönmark C, Vermaat JE (1998) Complex fish snail epiphyton interactions and their effects on submerged freshwater macrophytes. In: Jeppesen et al (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 47–68CrossRefGoogle Scholar
  18. Broyer J, Curtet L (2012) Biodiversity and fish farming intensification in French fishpond systems. Hydrobiologia 694:205–218CrossRefGoogle Scholar
  19. Caffrey JM et al (2010) A novel approach to aquatic weed control and habitat restoration using biodegradable jute matting. Aquat Invasions 5:123–129CrossRefGoogle Scholar
  20. Chytrý M (2011) Vegetace České republiky 3. Vodní a mokřadní vegetace. Academia, PrahaGoogle Scholar
  21. Chytrý M et al (2005) Invasions by alien plants in the Czech Republic: a quantitative assessment across habitats. Preslia 77:339–354Google Scholar
  22. Cooke SJ et al (2016) On the sustainability of inland fisheries: finding a future for the forgotten. Ambio 45:753–764CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cronk JK, Fennessy MS (2016) Wetland plants: biology and ecology. CRC press, Boca RatonGoogle Scholar
  24. Den Hartog C, Segal S (1964) A new classification of the water plant communities. Acta Botanica Neerlandica 13:367–393CrossRefGoogle Scholar
  25. Duarte SV (2017) Can aquatic plants keep pace with climate change? Front Plant Sci 8:1906CrossRefGoogle Scholar
  26. Dubravius J (1953) O rybnících. Nakl. Československé akademie věd, PrahaGoogle Scholar
  27. Dykyjová D, Květ J (eds) (1978) Pond littoral ecosystems: structure and functioning: methods and results of quantitative ecosystem research in the Czechoslovakian IBP wetland project. Springer-Verlag, BerlinGoogle Scholar
  28. Ficke AD et al (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish 17:581–613CrossRefGoogle Scholar
  29. Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339CrossRefGoogle Scholar
  30. Hájková P et al (2011) Prehistoric origin of the extremely species-rich semi-dry grasslands in the bile Karpaty Mts (Czech Republic and Slovakia). Preslia 83:185–204Google Scholar
  31. Hartman P, Schmidt G, Pietsch C (2015) Carp aquaculture in Europe and Asia. In: Pietsch C, Hirsch P (eds) Biology and ecology of carp. CRC Press, Boca Raton, pp 57–89CrossRefGoogle Scholar
  32. Hartman P et al (2016) Calcium content in pond sediment and its effect on neutralizing capacity of water and fish production. Aquac Int 24:1747–1754CrossRefGoogle Scholar
  33. Hassall C et al (2012) Temporal dynamics of aquatic communities and implications for pond conservation. Biodivers Conserv 21:829–852CrossRefGoogle Scholar
  34. Hejný S (1960) Ökologische Charakteristik der Wasser und Sumpfpflanzen in den Slowakischen Tiefebennen. Verlag der Slowakischen Akademie der Wissenschaften, BratislavaGoogle Scholar
  35. Hejný S (1978a) Conservation of plant communities in fishpond littorals. In: Dykyjová D, Květ J (eds) Pond littoral ecosystems: structure and functioning: methods and results of quantitative ecosystem research in the Czechoslovakian IBP wetland project. Springer-Verlag, Berlin, pp 429–433Google Scholar
  36. Hejný S (1978b) Management aspects of fishpond drainage. In: Dykyjová D, Květ J (eds) Pond littoral ecosystems: structure and functioning: methods and results of quantitative ecosystem research in the Czechoslovakian IBP wetland project. Springer-Verlag, Berlin, pp 397–403Google Scholar
  37. Hejný S, Husák Š, Jeřábková O, Ostrý I (1982) Anthropogenic impact on fishpond flora and vegetation. In: Gopal B, Turner RE, Wetzel RG, Whigham DF (eds) Wetlands: Ecology and management. National Institute of Ecology, Jaipur, pp 425–433Google Scholar
  38. Hejný S (1990) Dynamic changes in the macrophyte vegetation of South Bohemian fishponds after 35 years. Folia Geobot Phytotaxon 25:245–255CrossRefGoogle Scholar
  39. Hejný S (2000) Rostliny vod a pobřeží. East West Publishing Company, PrahaGoogle Scholar
  40. Hejný S, Hroudová Z, Květ J (2002) Fishpond vegetation: an historical view. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future: a case study of the Třeboň Basin Biosphere Reserve, Czech Republic. UNESCO, Paris, pp 63–95Google Scholar
  41. Hilt S et al (2006) Restoration of submerged vegetation in shallow eutrophic lakes: a guideline and state of the art in Germany. LIMNOLOGICA 36:155–171CrossRefGoogle Scholar
  42. Hoffmann RC (1996) Economic development and aquatic ecosystems in medieval Europe. Am Hist Rev 101:631–669CrossRefGoogle Scholar
  43. Hoffmann MA et al (2013) Experimental weed control of Najas marina spp. intermedia and Elodea nuttallii in lakes using biodegradable jute matting. J Limnol 72:39CrossRefGoogle Scholar
  44. Hofstra DE, Clayto J (2012) Assessment of benthic barrier products for submerged aquatic weed control. J Aquat Plant Manage 50:101–105Google Scholar
  45. Horváth L, Seagrave CH, Tamás G (1992) Carp and pond fish culture: including Chinese herbivorous species, pike, tench, zander, wels catfish, and goldfish. Fishing News Books, OxfordGoogle Scholar
  46. Husák Š, Kaplan Z, Chrtek J (2010) Vallisneria L. – zákruticha (valisnérie). In: Štěpánková J, Chrtek J, Kaplan Z (eds) Květena České republiky 8. Academia, PrahaGoogle Scholar
  47. Jawecki B et al (2013) The spatial variation of oxygen condition in carp pond located in nature reserve “Stawy Milickie”. J Water Land Dev 19:47–52CrossRefGoogle Scholar
  48. Jeffries MJ (2012) Ponds and the importance of their history: an audit of pond numbers, turnover and the relationship between the origins of ponds and their contemporary plant communities in south-east Northumberland, UK. Hydrobiologia 689:11–21CrossRefGoogle Scholar
  49. Jeppesen E et al (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38:1930–1941CrossRefPubMedGoogle Scholar
  50. Juříček M (2012) Flora and vegetation of fishponds in the Bohemian-Moravian Highlands. Acta Rer Natur 13:33–51Google Scholar
  51. Kaplan Z et al (2016) Distributions of vascular plants in the Czech Republic. Part 2. Preslia 88:229–322Google Scholar
  52. Kaplan Z et al (2017) Distributions of vascular plants in the Czech Republic. Part 5. Preslia 89:333–439CrossRefGoogle Scholar
  53. Kaplan Z et al (2018) Distributions of vascular plants in the Czech Republic. Part 7. Preslia 90: 425–431Google Scholar
  54. Kestemont P (1995) Different systems of carp production and their impact on the environment. Aquaculture 129:347–372CrossRefGoogle Scholar
  55. Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  56. Klimaszyk P, Rzymski P (2016) The complexity of ecological impacts induced by great cormorants. Hydrobiologia 771:13–30CrossRefGoogle Scholar
  57. Kloskowski J (2011) Human-wildlife conflicts at pond fisheries in eastern Poland: perceptions and management of wildlife damage. Eur J Wildl Res 57:295–304CrossRefGoogle Scholar
  58. Klotz RL, Linn SA (2001) Influence of factors associated with water level drawdown on phosphorus release from sediments. Lake Reservoir Manage 17:48–54CrossRefGoogle Scholar
  59. Kořínek V et al (1987) Carp ponds of Central Europe. In: Michel G (ed) Managed aquatic ecosystems. Ecosystems of the world, 29. Elsevier, New York, pp 29–62Google Scholar
  60. Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14:89–136CrossRefGoogle Scholar
  61. Lamine C, Bellon S (2009) Conversion to organic farming: a multidimensional research object at the crossroads of agricultural and social sciences: a review. Agron Sustain Dev 29:97–112CrossRefGoogle Scholar
  62. Landucci F et al (2015) Formalized classification of species-poor vegetation: a proposal of a consistent protocol for aquatic vegetation. J Veg Sci 26:791–803CrossRefGoogle Scholar
  63. Lazartigues A et al (2013) Pesticide pressure and fish farming in barrage pond in northeastern France. Part II: residues of 13 pesticides in water, sediments, edible fish and their relationships. Environ Sci Pollut Res 20:117–125CrossRefGoogle Scholar
  64. Lu J et al (2018) Nutrient release and uptake by littoral macrophytes during water level fluctuations. Sci Total Environ 622:29–40CrossRefPubMedGoogle Scholar
  65. Marcé R et al (2016) Automatic high frequency monitoring for improved lake and reservoir management. Environ Sci Technol 50:10780–10794CrossRefPubMedGoogle Scholar
  66. Markovic D et al (2014) Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers Distrib 20:1097–1107CrossRefGoogle Scholar
  67. Matsuzaki SS et al (2007) Effects of common carp on nutrient dynamics and littoral community composition: roles of excretion and bioturbation. Fundam Appl Limnol 168:27–38CrossRefGoogle Scholar
  68. Mayer JR (1978) Aquatic weed management by benthic semi-barriers. J Aquat Plant Manage 16:31–33Google Scholar
  69. Miklín J, Macháček P (2016) Birds of Lednické fishponds (Czech Republic). J Maps 12:239–248Google Scholar
  70. Morley NJ (2007) Anthropogenic effects of reservoir construction on the parasite fauna of aquatic wildlife. EcoHealth 4:374–383CrossRefGoogle Scholar
  71. Musil M et al (2014) Impact of topmouth gudgeon (Pseudorasbora parva) on production of common carp (Cyprinus carpio)—question of natural food structure. Biologia 69:1757–1769CrossRefGoogle Scholar
  72. Niederholzer R, Hofer R (1979) The adaptation of digestive enzymes to temperature, season and diet in roach Rutilus rutilus L. and Rudd Scardinius erythrophthalmus L. Cellulase. J Fish Biol 15:411–416CrossRefGoogle Scholar
  73. Panek F (1987) Biology and ecology of carp. In: Cooper EL (ed) Carp in North America. American Fisheries Society, Bethesda, pp 1–15Google Scholar
  74. Pavelková R et al (2016) Historical ponds of the Czech Republic: an example of the interpretation of historic maps. J Maps 12:1–9CrossRefGoogle Scholar
  75. Pechar L (2000) Impacts of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fish Manag Ecol 7:23–31CrossRefGoogle Scholar
  76. Pechar L, Přikril I, Faina R (2002) Hydrobiological evaluation of Třeboň fishponds since the end of 19th century. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future: a case study of the Třeboň Basin biosphere reserve. UNESCO, Paris, pp 31–61Google Scholar
  77. Pechar L et al (2017) Tři roky bez kapra na rybníce rod (Třeboňsko)—aneb, jak reálná je možnost zlepšit kvalitu vody a stav rybničního biotopu absencí obsádky kapra? In: Urbánek M (ed) 4. ročník odborné konference, České Budějovice, February 2017. Rybářské sdružení ČR, České Budějovice, pp 55–60Google Scholar
  78. Pedersen O et al (2013) Underwater photosynthesis of submerged plants—recent advances and methods. Front Plant Sci 4:140CrossRefPubMedPubMedCentralGoogle Scholar
  79. Peterson JO et al (1974) Lake rehabilitation techniques and experiences. J Am Water Resour Assoc 10:1228–1245CrossRefGoogle Scholar
  80. Petr T (2000) Interactions between fish and aquatic macrophytes in inland waters—a review. FAO Fisheries Technical Paper 396, RomeGoogle Scholar
  81. Podubský V (1948) Vodní, bažinné a mokřadní rostliny: Výskyt, život a význam, zvláště v rybářství. Ministerstvo zemědělství, PrahaGoogle Scholar
  82. Pokorný J, Hauser V (2002) The restoration of fish ponds in agricultural landscapes. Ecol Eng 18:555–574CrossRefGoogle Scholar
  83. Pokorný J, Pechar L (2000) Development of fishpond ecosystems in the Czech Republic: role of management and nutrient impute (limnological review). Sylvia 35:8–15Google Scholar
  84. Pokorný J et al (1990) Functioning of plant component in densely stocked fish ponds. Bull Ecol 21:44–48Google Scholar
  85. Pokorný J et al (2002) Development of fishpond ecosystems in the Czech Republic: role of management and nutrient impute (limnological review). In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future: a case study of the Třeboň Basin biosphere reserve, Czech Republic. UNESCO, Paris, pp 97–124Google Scholar
  86. Pollux BJA (2011) The experimental study of seed dispersal by fish (ichthyochory). Freshw Biol 56:197–212CrossRefGoogle Scholar
  87. Potužák J et al (2007) Changes in fish production effectivity in eutrophic fishponds—impact of zooplankton structure. Aquac Int 15:201–210CrossRefGoogle Scholar
  88. Potužák J et al (2016) Mass balance of fishponds: are they sources or sinks of phosphorus? Aquac Int 24:1725–1745CrossRefGoogle Scholar
  89. Prejs A (1984) Herbivory by temperate freshwater fishes and its consequences. Environ Biol Fish 10:281–296CrossRefGoogle Scholar
  90. Přikryl I (1996) Development of fishery management of Czech ponds and its reflection in zooplankton structure as a possible criterion of biological value of ponds. In: Flajšhans M (ed) Collection of scientific work to 75. anniversary of establishment of Research Institute of Fish Culture and Hydrobiology. Research Institute of Fish Culture and Hydrobiology, VodňanyGoogle Scholar
  91. Pyšek P et al (2012) Catalogue of alien plants of the Czech Republic: checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255Google Scholar
  92. Rackham O (1980) Ancient woodland: its history, vegetation and uses in England. Edward Arnold, LondonGoogle Scholar
  93. Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533CrossRefPubMedGoogle Scholar
  94. Rahman MM et al (2008) A comparative study of common carp (Cyprinus carpio L.) and calbasu (Labeo calbasu Hamilton) on bottom soil resuspension, water quality, nutrient accumulations, food intake and growth of fish in simulated rohu (Labeo rohita Hamilton) ponds. Aquaculture 285:78–83CrossRefGoogle Scholar
  95. Redding TA, Midlen AB (1991) Fish production in irrigation canals: a review. FAO, RomeGoogle Scholar
  96. Richert E et al (2016) Rare wetland grass (Coleanthus subtilis) in central and Western Europe—current distribution, habitat types, and threats. Acta Soc Bot Pol 85:1–16CrossRefGoogle Scholar
  97. Sayer C et al (2012) The role of pond management for biodiversity conservation in an agricultural landscape. Aquat Conserv Mar Freshwat Ecosyst 22:626–638CrossRefGoogle Scholar
  98. Schäfer-Guignier O (1994) Weiher in der Franche-Comté: Eine floristisch-ökologische und vegetationskundliche Untersuchung. Dissertationes Botanicae 213:1–239Google Scholar
  99. Scheffer M et al (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279CrossRefPubMedGoogle Scholar
  100. Sidorkewicj N et al (1998) Interaction of common carp with aquatic weeds in argentine drainage channels. J Aquat Plant Manage 36:10Google Scholar
  101. Siebert R, Toogood M, Knierim A (2006) Factors affecting European farmers’ participation in biodiversity policies. Sociol Rural 46:318–340CrossRefGoogle Scholar
  102. Spikmans F et al (2013) High prevalence of the parasite Sphaerothecum destruens in the invasive topmouth gudgeon Pseudorasbora parva in the Netherlands, a potential threat to native freshwater fish. Aquat Invasions 8:355–360CrossRefGoogle Scholar
  103. Sterling EJ et al (2017) Assessing the evidence for stakeholder engagement in biodiversity conservation. Biol Conserv 209:159–171CrossRefGoogle Scholar
  104. Stoate C et al (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manag 91:22–46CrossRefGoogle Scholar
  105. Šumberová K, Ducháček M (2017) Analysis of plant soil seed banks and seed dispersal vectors: its potential and limits for forensic investigations. Forensic Sci Int 270:121–128CrossRefPubMedGoogle Scholar
  106. Šumberová K et al (2005) Vegetation dynamics on exposed pond bottoms in the Ceskobudejovicka Basin (Czech Republic). Phytocoenologia 35:421–448CrossRefGoogle Scholar
  107. Šumberová K et al (2006) Variability of vegetation of exposed pond bottoms in relation to management and environmental factors. Preslia 78:235–252Google Scholar
  108. Šumberová K et al (2012) Life-history traits controlling the survival of Tillaea aquatica: a threatened wetland plant species in intensively managed fishpond landscapes of the Czech Republic. Hydrobiologia 689:91–110CrossRefGoogle Scholar
  109. Šusta J (1898) Fünf Jahrhunderte der Teichwirtschaft zu Wittingau. Herrcke & Lebeling, StettinGoogle Scholar
  110. Sychra J et al (2010) Distribution and diversity of littoral macroinvertebrates within extensive reed beds of a lowland pond. Ann Limnol-Int J Limnol 46:281–289CrossRefGoogle Scholar
  111. Thomaz SM, Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22:218–236CrossRefGoogle Scholar
  112. Thompson K et al (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, CambridgeGoogle Scholar
  113. Van Zon JCJ (1977) Grass carp (Ctenopharyngodon idella Val.) in Europe. Aquat Bot 3:143–155CrossRefGoogle Scholar
  114. Waldon B (2012) The conservation of small water reservoirs in the Krajeńskie Lakeland (North-West Poland). LIMNOLOGICA 42:320–327CrossRefGoogle Scholar
  115. Watkins CE et al (1981) Food habits of fingerling grass carp. Progress Fish-Cult 43:95–97CrossRefGoogle Scholar
  116. Wezel A et al (2014) Biodiversity patterns of nutrient-rich fish ponds and implications for conservation. Limnology 15:213–223CrossRefGoogle Scholar
  117. Zákravský P, Hroudová Z (2007) The influence of controlled fishpond management on reed-bed restoration in the Velký a Malý Tisý National Nature Reserve. Zpr Čes Bot Společ 42, Mater 22:167–196Google Scholar
  118. Zambrano L, Hinojosa D (1999) Direct and indirect effects of carp (Cyprinus carpio L.) on macrophyte and benthic communities in experimental shallow ponds in Central Mexico. Hydrobiologia 408:131–138CrossRefGoogle Scholar
  119. Zapletal T et al (2016) Consumption of plant material by perch (Perca fluviatilis). Folia Zool 65:95–97CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kateřina Francová
    • 1
    Email author
  • Kateřina Šumberová
    • 2
  • Georg A. Janauer
    • 3
  • Zdeněk Adámek
    • 1
  1. 1.Institute of Aquaculture and Protection of WatersUniversity of South Bohemia in Ceske Budejovice, FFPW, CENAKVAČeské BudějoviceCzech Republic
  2. 2.Department of Vegetation EcologyInstitute of Botany of the Czech Academy of SciencesBrnoCzech Republic
  3. 3.Department of Limnology and Bio-OceanographyUniversity of ViennaViennaAustria

Personalised recommendations