Aquaculture International

, Volume 27, Issue 1, pp 209–225 | Cite as

Transcriptional response of immune-related genes in Litopenaeus vannamei post-larvae cultured in recirculating aquaculture systems with and without biofloc

  • Jorge Soto-Alcalá
  • Píndaro Álvarez-RuizEmail author
  • J. M. Audelo-Naranjo
  • H. M. Esparza-Leal
  • I. E. Luis-Villaseñor
  • J. A. Estrada-Godínez
  • A. Luna-González
  • C. Gámez-Jiménez
  • G. Diarte-Plata


In the present study, quantitative real-time RT-PCR was used to monitor the transcriptional responses of seven key genes related to some innate immune pathways in shrimp postlarvae after being placed in a recirculating aquaculture system (RAS) with or without biofloc (BF or no-BF). Each system consisted of the main tank with 400 L of seawater and six glass aquariums (50 L each). Besides, the nucleotide sequences of myosin light chain (LvMyo) from Litopenaeus vannamei related to the phagocytosis pathway were described. The sequence analysis indicated that LvMyo is a conserved protein among crustaceans and is present in other arthropods. The transcriptional response to the treatments showed several expression patterns. The prophenoloxidase gene was up-regulated in both systems (P < 0.05) and was higher in BF than in no-BF (P < 0.01). Phagocytosis-related genes depicted differential expressions. LvMyo, Ras-associated binding 6, and Ras-related nuclear protein expressions were higher in BF than in no-BF (P < 0.05). Regarding antioxidant genes, glutathione peroxidase was up-regulated only in BF (P < 0.05). Superoxide dismutase expression was lower in BF at 12 h (P < 0.05), but higher at 24 h (P < 0.05). These findings suggest that biofloc modulates the transcription of genes related to the immune response in shrimp as an early response or at the mid-term. Besides, the biological filter in a RAS without biofloc seems to be able to maintain a bacterial population that promotes a lower but similar response to that induced in the biofloc system.


Biofloc Gene expression Glutathione peroxidase Heterotrophic culture Phagocytosis Prophenoloxidase RAS Superoxide dismutase Shrimp immune system 



Recirculating aquaculture system


Treatment with biofloc


Treatment without biofloc


Litopenaeus vannamei myosine light chain




Ras-associated binding 6


Ras-related nuclear protein


Glutathione peroxidase


Superoxide dismutase


Phagocytosis-activating protein





We thank CONACyT for the scholarship (166929) to Jorge Soto Alcalá.

Funding information

This study was funded by the Instituto Politécnico Nacional (SIP20151682 and SIP20160089).

Compliance with ethical standards

This study complies with the Mexican official Standard NOM-0062-ZOO-1999, technical specifications for the production, care and use of laboratory animals.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Álvarez-Ruiz P, Luna-González A, Escamilla-Montes R, Mejía-Ruiz CH, Magallón-Barajas FJ, Llera-Herrera R, Galván-Álvarez DA (2015) Long-lasting effect against white spot syndrome virus in shrimp Broodstock, Litopenaeus vannamei, by LvRab7 Silencing. J World Aquacult Soc 46(6):571–582Google Scholar
  2. Amparyup P, Charoensapsri W, Tassanakajon A (2013) Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish Shellfish Immunol 34:990–1001CrossRefGoogle Scholar
  3. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250CrossRefGoogle Scholar
  4. APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Water Works Association, Washington, DC, USAGoogle Scholar
  5. Avnimelech Y (2009) Biofloc Technology: A Practical Guide Book. The world aquaculture society. In: Baton Rouge. Louisiana, USAGoogle Scholar
  6. Cardona E, Saulnier D, Lorgeoux B, Chim L, Gueguen Y (2015) Rearing effect of biofloc on antioxidant and antimicrobial transcriptional response in Litopenaeus stylirostris shrimp facing an experimental sub-lethal hydrogen peroxide stress. Fish Shellfish Immunol 45:933–939CrossRefGoogle Scholar
  7. Cerenius L, Lee BL, Soderhäll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271CrossRefGoogle Scholar
  8. Deachamag P, Intaraphad U, Phongdara A, Chotigeat W (2006) Expression of a phagocytosis activating protein (PAP) gene in immunized black tiger shrimp. Aquaculture 225:165–175CrossRefGoogle Scholar
  9. Destoumieux D, Muñoz M, Cosseau C, Rodríguez J, Bulet P, Comps M, Bachère E (2000) Penaedins, antimicrobial peptides with chitin binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J Cell Sci 113:461–469Google Scholar
  10. DOF (2011) Diario Oficial de la Federación. ACUERDO mediante el cual se establecen las medidas sanitarias para reducir los factores de riesgo en la producción de camarón, asociados a la enfermedad de las manchas blancas en los estados de Baja California Sur, Nayarit, Sinaloa y Sonora Cited 3 oct 2011
  11. Ekasari J, Azhar MH, Surawidjaja EH, Nuryati S, De Schryver P, Bossier P (2014) Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunol 41:332–339CrossRefGoogle Scholar
  12. FAO (2014) The State of World Fisheries and Aquaculture 2014. Rome. 223 pp.Google Scholar
  13. FAO (2018) The state of world fisheries and aquaculture 2018 - meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO Cited 10 jul 2018
  14. Flegel TW (2012) Historic emergence, impact and current status of shrimp pathogens in Asia. J Invertebr Pathol 110:166–173CrossRefGoogle Scholar
  15. Gao H, Li F, Dong B, Zhang Q, Xiang J (2009) Molecular cloning and characterisation of prophenoloxidase (ProPO) cDNA from Fenneropenaeus chinensis and its transcription injected by Vibrio anguillarum. Mol Biol Rep 36(5):1159–1166CrossRefGoogle Scholar
  16. Gómez-Gil B (2006) Manual de bacteriología. CIAD-Mazatlán, CerritosGoogle Scholar
  17. Han F, Zhang X (2007) Characterization of a ras-related nuclear protein (ran protein) up-regulated in shrimp antiviral immunity. Fish Shellfish Immunol 23:937–944CrossRefGoogle Scholar
  18. Han F, Wang Z, Wang X (2010) Characterization of myosin light chain in shrimp hemocytic phagocytosis. Fish Shellfish Immunol 29:875–883CrossRefGoogle Scholar
  19. Han-Chin Wang K, Tseng CW, Lin HY, Chen IT, Chen YH, Chen YM, Chen TY, Yang HL (2010) RNAi knock-down of the Litopenaeus vannamei toll gene (LvToll) significantly increases mortality and reduces bacterial clearance after challenge with Vibrio harveyi. Dev Comp Immunol 34:49–58CrossRefGoogle Scholar
  20. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19Google Scholar
  21. Ji PF, Yao CL, Wang ZY (2009) Immune response and gene expression in shrimp (Litopenaeus vannamei) hemocytes and hepatopancreas against some pathogen-associated molecular patterns. Fish Shellfish Immunol 27:563–570CrossRefGoogle Scholar
  22. Jiravanichpaisal P, Lee BL, Söderhäll K (2006) Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211:213–236CrossRefGoogle Scholar
  23. Khimmakthong U, Deachamag P, Phongdara A, Chotigeat W (2011) Stimulating the immune response of Litopenaeus vannamei using the phagocytosis activating protein (PAP) gene. Fish Shellfish Immunol 31:415–422CrossRefGoogle Scholar
  24. Kim SK, Pang Z, Seo HC, Cho YR, Samocha T, Jang IK (2014) Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae. Aquac Res 45:362–371CrossRefGoogle Scholar
  25. Lee SY, Söderhäll K (2002) Early events in crustacean innate immunity. Fish Shellfish Immunol 12:421–437CrossRefGoogle Scholar
  26. Lightner DV (2011) Virus diseases of farmed shrimp in the western hemisphere (the Americas): a review. J Invertebr Pathol 106:110–130CrossRefGoogle Scholar
  27. Lightner DV, Redman RM, Pantoja CR, Tang KFJ, Noble BL, Schofield P, Mohney LL, Nunan LM, Navarro SA (2012) Historic emergence, impact and current status of shrimp pathogens in the Americas. J Invertebr Pathol 110:174–183CrossRefGoogle Scholar
  28. Lin CY, Hu KY, Ho SH, Song YL (2006) Cloning and characterization of a shrimp clip domain serine protease homolog (c-SPH) as a cell adhesion molecule. Dev Comp Immunol 30:1132–1144CrossRefGoogle Scholar
  29. Liu CH, Tseng MC, Cheng W (2007) Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei, and its expression following Vibrio alginolyticus infection. Fish Shellfish Immunol 23:34–45CrossRefGoogle Scholar
  30. Liu W, Han F, Zhang X (2009) Ran GTPase regulates hemocytic phagocytosis of shrimp by interaction with myosin. J Proteome Res 8:1198–1206CrossRefGoogle Scholar
  31. Qian Z, Liu T, Liu Q, He S, Liu Y, Hou F, Wang X, Mi X, Cai C, Liu X (2014) p53 is involved in shrimp survival via its regulation roles on MnSOD and GPx in response to acute environmental stresses. Comparative Biochemistry and Physiology, Part C 159:38–51Google Scholar
  32. Shekhar MS, DilliKumar M, Vinaya Kumar K, Gopikrishna G, Rajesh S, Kiruthika J, Ponniah AG (2012) Transcript analysis of white spot syndrome virus latency and phagocytosis activating protein genes in infected shrimp (Penaeus monodon). Indian J Virol 23(3):333–343CrossRefGoogle Scholar
  33. Söderhäll K, Cerenius L (1992) Crustacean immunity. Annu Rev Fish Dis 2:3–23CrossRefGoogle Scholar
  34. Strikland JDH, Parsons TH (1972) A Practical Handbook of Seawater Analysis. Fish Research Board of Canada Bulletin, OttawaGoogle Scholar
  35. Subramanian D, Jang YH, Kim DH, Kang BJ, Heo MS (2013) Dietary effect of Rubus coreanus ethanolic extract on immune gene expression in white leg shrimp, Penaeus vannamei. Fish Shellfish Immunol 35:808–814CrossRefGoogle Scholar
  36. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 (7) research0034.1-research0034.11Google Scholar
  37. Wang YC, Chang PS, Chen HY (2007) Tissue expressions of nine genes important to immune defense of the Pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 23:1161–1177Google Scholar
  38. Xu WJ, Pan LQ (2013) Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture 412-413:117–124CrossRefGoogle Scholar
  39. Xu WJ, Pan LQ (2014) Evaluation of dietary protein level on selected parameters of immune and antioxidant systems, and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquaculture 426-427:181–188CrossRefGoogle Scholar
  40. Ye T, Zong R, Zhang X (2012a) The role of white spot syndrome virus (WSSV) VP466 protein in shrimp antiviral phagocytosis. Fish Shellfish Immunol 33:350–358CrossRefGoogle Scholar
  41. Ye T, Tang W, Zhang X (2012b) Involvement of Rab6 in the regulation of phagocytosis against virus infection in invertebrates. J Proteome Res 11:4834–4846CrossRefGoogle Scholar
  42. Zeeshan M, Murugadas A, Ghaskadbi S, Rajendran RB, Akbarsha MA (2016) ROS dependent copper toxicity in Hydra-biochemical and molecular study. Comp Biochem Physiol C Toxicol Pharmacol 185-186:1–12CrossRefGoogle Scholar
  43. Zhao Z, Jianga C, Zhang X (2011) Effects of immunostimulants targeting ran GTPase on phagocytosis against virus infection in shrimp. Fish Shellfish Immunol 31:1013–1018CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jorge Soto-Alcalá
    • 1
    • 2
  • Píndaro Álvarez-Ruiz
    • 1
    Email author return OK on get
  • J. M. Audelo-Naranjo
    • 2
  • H. M. Esparza-Leal
    • 1
  • I. E. Luis-Villaseñor
    • 2
  • J. A. Estrada-Godínez
    • 2
  • A. Luna-González
    • 1
  • C. Gámez-Jiménez
    • 1
  • G. Diarte-Plata
    • 1
  1. 1.Instituto Politécnico NacionalCentro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad SinaloaGuasaveMexico
  2. 2.Universidad Autónoma de SinaloaFacultad de Ciencias del MarMazatlánMexico

Personalised recommendations