Geochemistry of the Lake Chad Tributaries Under Strongly Varying Hydro-climatic Conditions

  • A. Mahamat NourEmail author
  • C. Vallet-Coulomb
  • C. Bouchez
  • P. Ginot
  • J. C. Doumnang
  • F. Sylvestre
  • P. Deschamps
Review Article


The Lake Chad Basin (LCB) is one of the main endorheic basins in the world and has undergone large-level and surface variations during the last decades, particularly during the Sahelian dry period in the 1970s and the 1980s. The Chari–Logone River system covers 25% of the LCB but accounts for up to 82% of the Lake Chad water supply. The aim of this study is to investigate the dissolved phase transported by the Chari–Logone system, in order (1) to elucidate the origin and the behavior of major elements and the weathering processes in the watershed; (2) to estimate the total dissolved flux, its variability over the last decades and the driving factors. To do so, samples were collected monthly between January 2013 and November 2016 at three representative sites of the basin: in the Chari River in “Chagoua,” in the Logone River in “Ngueli” just before the confluence of both rivers, and at a downstream site in “Douguia,” 30 km after the confluence. Concentrations in major elements displayed significant seasonal variations in the Chari and Logone waters. At the seasonal time scale, the comparison between the concentrations of chemical elements and the flow rates showed a hysteresis loop. This hysteresis behavior corresponds to a variable contribution over time of two water bodies, fast surface water, and slow groundwater, the latter carrying higher concentrations and Ca/Na ratio, which may result from the contribution of pedogenic carbonate weathering to the dominant signature of silicate weathering. At the annual time scale, similar average concentrations are observed in the Chari and Logone Rivers, despite contrasted annual runoff. In addition, an interannual stability of ionic concentrations was observed in the Chari–Logone River during the flood regime, both during the years covered by our monitoring (2013–2016) and during the pre-drought period (1969, 1972 and 1973). This situation corresponds to a chemostatic behavior, where the annual river discharge is the main factor controlling the interannual variation of chemical fluxes.


Lake Chad Basin Chemical fluxes Silicate weathering Strontium 



This work was supported by the French National Research Institute for Sustainable Development (IRD) in the framework of the project “Préservation du Lac Tchad: Contribution à la stratégie de développement du lac” funded by “Fond Français de l’Environnement Mondial” and by “Agence Française pour le Développement.” This work also benefit from the support of Equipex project ASTER-CEREGE and ofthe LABEX OT-Med program of the French Investissement d’Avenir program. The authors are grateful to the University of N’Djamena, the Centre National de la Recherche pour le Développement of Chad (CNRD) and the French Embassy in Chad for their logistical support. We thank Hélène Mariot and Wulfram Barthelemy for the preparation of the chemistry and the analysis of the major elements and Abel Guihou for the analysis of the isotopic composition of strontium.


  1. Agbri L, Bamba S, Doumouya I, Savane I (2010) Bilan des flux de matières particulaires et dissoutes du Sassandra à Gaoulou pont (Côte d’Ivoire). Sci Nat 7:107–118. CrossRefGoogle Scholar
  2. Amiotte Suchet P, Probst J-L, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob Biogeochem Cycles. CrossRefGoogle Scholar
  3. Bouchez C, Goncalves J, Deschamps P et al (2016) Hydrological, chemical, and isotopic budgets of Lake Chad: a quantitative assessment of evaporation, transpiration and infiltration fluxes. Hydrol Earth Syst Sci 20:1599–1619. CrossRefGoogle Scholar
  4. Bouchez J, Moquet J-S, Espinoza JC et al (2017) River mixing in the Amazon as a driver of concentration-discharge relationships. Water Resour Res 53:8660–8685. CrossRefGoogle Scholar
  5. Bouchez C, Deschamps P, Goncalves J et al (2019) Water transit time and active recharge in the Sahel inferred by bomb-produced 36 Cl. Sci Rep 9:7465. CrossRefGoogle Scholar
  6. Bravard J-P, Petit F (2000) Les cours d’eau: dynamique du système fluvial.
  7. Cabot J (1965) Le bassin du moyen Logone. Document de ORSTOM, P.355, Paris.
  8. Calmels D, Galy A, Hovius N et al (2011) Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth Planet Sci Lett 303:48–58. CrossRefGoogle Scholar
  9. Carmouze J-P (1976) La régulation hydrogéochimique du lac Tchad: Contribution à l’analyse biogéodynamique d’un système lacustre endoréique en milieu continental cristallin. doc. ORSTOM, Paris, p 413.
  10. Chorover J, Derry LA, McDowell WH (2017) Concentration-discharge relations in the critical zone: implications for resolving critical zone structure, function, and evolution. Water Resour Res 53:8654–8659. CrossRefGoogle Scholar
  11. Dietrich F, Diaz N, Deschamps P et al (2017) Origin of calcium in pedogenic carbonate nodules from silicate watersheds in the Far North Region of Cameroon: respective contribution of in situ weathering source and dust input. Chem Geol 460:54–69. CrossRefGoogle Scholar
  12. Evans C, Davies TD (1998) Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resour Res 34:129–137. CrossRefGoogle Scholar
  13. Gac J-Y (1980) Géochimie du bassin du lac Tchad: Bilan de l’altération de l’érosion et de la sédimentation, doc. ORSTOM, Paris, p 252.
  14. Gaillardet J, Dupre B, Allegre CJ, Négrel P (1997) Chemical and physical denudation in the Amazon River Basin. Chem Geol 142:141–173. CrossRefGoogle Scholar
  15. Gaillardet J, Dupré B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30. CrossRefGoogle Scholar
  16. Godsey SE, Kirchner JW, Clow DW (2009) Concentration–discharge relationships reflect chemostatic characteristics of US catchments. Hydrol Process Int J 23:1844–1864. CrossRefGoogle Scholar
  17. Harmon RS, Wörner G, Goldsmith ST et al (2016) Linking silicate weathering to riverine geochemistry: a case study from a mountainous tropical setting in west-central Panama. Bulletin 128:1780–1812. CrossRefGoogle Scholar
  18. Hartmann J, Jansen N, Dürr HH et al (2009) Global CO2-consumption by chemical weathering: what is the contribution of highly active weathering regions? Glob Planet Change 69:185–194. CrossRefGoogle Scholar
  19. Ibarra DE, Moon S, Caves JK et al (2017) Concentration–discharge patterns of weathering products from global rivers. Acta Geochim 36:405–409. CrossRefGoogle Scholar
  20. Koger JM, Newman BD, Goering TJ (2018) Chemostatic behaviour of major ions and contaminants in a semiarid spring and stream system near Los Alamos, NM, USA. Hydrol Process 32:1709–1716. CrossRefGoogle Scholar
  21. Louis P (1970) Contribution géophysique à la connaissance géologique du bassin du lac Tchad. ORSTOM, Paris.
  22. Louvat P, Allègre CJ (1997) Present denudation rates on the island of Reunion determined by river geochemistry: basalt weathering and mass budget between chemical and mechanical erosions. Geochim Cosmochim Acta 61:3645–3669. CrossRefGoogle Scholar
  23. Meybeck M (2003) Global occurrence of major elements in rivers. Treatise Geochem 5:207–223. CrossRefGoogle Scholar
  24. Meybeck M, Ragu A (1997) River discharges to the oceans: an assessment of suspended solids, major ions and nutrients, vol. 245. UNEPGoogle Scholar
  25. Meybeck M, Ragu A, Pasco A (1996) Etablissement des flux polluants dans les eaux superficielles: tome 1: introduction, paramètres classiques et méthodologie de calcul des flux, Tome 2: micropolluants organiques et minéraux, Tome 3: traitements statistiques, points forts, points critiques, recommandations et annexes générales. Etude Inter-Agences (28)Google Scholar
  26. Moquet J-S, Guyot J-L, Crave A et al (2016) Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean. Environ Sci Pollut Res 23:11405–11429. CrossRefGoogle Scholar
  27. Négrel P, Allègre CJ, Dupré B, Lewin E (1993) Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo Basin case. Earth Planet Sci Lett 120:59–76. CrossRefGoogle Scholar
  28. Olivry J-C, Diallo Iam M, Bricquet J-P (1994) Quelques données préliminaires sur l’environnement et la qualité des apports du Niger au Sahel. e_des_flux_de_matieres_dissoutes_et_particulaires_dans_les_apports_du_Niger_au_Sahel
  29. Ollivier P, Hamelin B, Radakovitch O (2010) Seasonal variations of physical and chemical erosion: a three-year survey of the Rhone River (France). Geochim Cosmochim Acta 74:907–927. CrossRefGoogle Scholar
  30. Pias J (1968) Contribution à l’étude des formations sédimentaires tertiaires et quaternaires de la cuvette tchadienne et des sols qui en dérivent (République du Tchad). PhD Thesis, Orstom. Retrieved from
  31. Picouet C, Dupré B, Orange D, Valladon M (2002) Major and trace element geochemistry in the upper Niger river (Mali): physical and chemical weathering rates and CO2 consumption. Chem Geol 185:93–124. CrossRefGoogle Scholar
  32. Probst J-L, NKounkou RR, Krempp G et al (1992) Dissolved major elements exported by the Congo and the Ubangi rivers during the period 1987–1989. J Hydrol 135:237–257. CrossRefGoogle Scholar
  33. Roche M-A (1980) Traçage naturel salin et isotopique des eaux du système hydrologique du lac Tchad. ORSTOM, Paris, p 391.
  34. Schneider J-L, Wolf JP (1992) Carte géologique et hydrogéologique de 1/500 000 de la republique du Tchad, mémoire explicatif. BRGM, Paris, p 531Google Scholar
  35. Schuster M, Roquin C, Duringer P, Brunet M, Caugy M, Fontugne M, Mackaye HT et al (2005) Holocene lake Mega-Chad palaeoshorelines from space. Quat Sci Rev 24(16–17):1821–1827. CrossRefGoogle Scholar
  36. Sylvestre F (2014) Variabilité paléohydrologique et changements climatiques. In: Lemoalle J, Magrin G (eds) Le développement du lac Tchad: situation actuelle et futurs possibles. IRD Editions, Marseille, pp 79–92 (Expertise collégiale) Google Scholar
  37. Thirlwall MF (1991) Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem Geol Isot Geosci Sect 94:85–104. CrossRefGoogle Scholar
  38. Viers J, Dupré B, Braun J-J et al (2000) Major and trace element abundances, and strontium isotopes in the Nyong basin rivers (Cameroon): constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments. Chem Geol 169:211–241. CrossRefGoogle Scholar
  39. Walling DE, Foster IDL (1975) Variations in the natural chemical concentration of river water during flood flows, and the lag effect: some further comments. J Hydrol 26:237–244. CrossRefGoogle Scholar
  40. Walling DE, Webb BW (1980) The spatial dimension in the interpretation of stream solute behaviour. J Hydrol 47:129–149. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Aix Marseille Université, CNRS, IRD, Collège de France, INRACEREGEAix-en-ProvenceFrance
  2. 2.Université de N’DjaménaDépartement de Géologie, Laboratoire HydroGéoscience et RéservoirN’DjaménaTchad
  3. 3.Université Grenoble AlpesIRD, CNRS, Institut des Géosciences de l’EnvironnementGrenobleFrance
  4. 4.Université de RennesCNRS, Géosciences RennesRennesFrance

Personalised recommendations