Advertisement

Aquatic Geochemistry

, Volume 24, Issue 5–6, pp 325–344 | Cite as

Hydrogeochemical Processes in a Small Eastern Mediterranean Karst Watershed (Nahr Ibrahim, Lebanon)

  • N. Hanna
  • B. LartigesEmail author
  • V. Kazpard
  • E. Maatouk
  • N. Amacha
  • S. Sassine
  • A. El SamraniEmail author
Article
  • 74 Downloads

Abstract

Watersheds located in semiarid areas such as the eastern Mediterranean are particularly sensitive to the impact of climate change. To gain knowledge on the hydrogeochemical processes occurring in the Nahr Ibrahim watershed, a Critical Zone Observatory in Lebanon, we analyze the isotopic composition of the river water as well as the concentrations of the major ions exported (Ca2+, Mg2+, HCO3, Na+, Cl, K+, SO42−). Sampling campaigns were conducted from March 2014 to August 2016 to capture contrasting hydrological conditions. The results indicate that the carbonate lithology of the watershed is the predominant source of Ca2+, Mg2+ and HCO3, whereas the low contents of Na+, Cl, K+, SO42− mainly originate from sea spray. Except in the headwaters, the Nahr Ibrahim River is oversaturated with respect to calcite and dolomite. During wet seasons, calcite weathering and dolomite weathering contribute in an equivalent manner to the solute budget, whereas during dry seasons, calcite precipitates in the river. The isotopic composition of the river water reveals little seasonal dependency, the groundwater recharge by snowmelt infiltration leading to spring waters depleted in heavier isotopes during the dry seasons. A carbonate weathering rate of about 176 t/km2/year was determined at the outlet of the Nahr Ibrahim watershed. The calculated values of CO2 partial pressure, on average twice the atmospheric pressure, suggest that the river is a significant source of CO2 to the atmosphere (111 t/year).

Keywords

Karst watershed Nahr Ibrahim River Carbonate weathering Water isotopes 

Notes

Acknowledgements

This project was supported by grants from the Lebanese University and the Lebanese Council for Scientific Research. Nour Hanna and Antoine El Samrani also gratefully acknowledge the support of Azm and Saadé Association. The authors would like to thank the Remote Sensing Center of the Lebanese National Council for Scientific Research (NCSR-L) and the Lebanese Agricultural Research Institute (LARI) for providing us with the needed data and measurements relative to the Nahr Ibrahim watershed during the period of study. The authors would also like to thank Mr. Hussein Kanbar, Mrs Yara Rahmé and Mr Hamze Mohieddine for their assistance during the sampling campaigns. Insightful suggestions on the manuscript from Dr. C. Destrigneville were also appreciated.

Supplementary material

10498_2018_9346_MOESM1_ESM.docx (74 kb)
Supplementary material 1 (DOCX 73 kb)

References

  1. Abdel-Rahman AFM, Nader FH (2002) Characterization of the Lebanese Jurassic-Cretaceous carbonate stratigraphic sequence: a geochemical approach. Geol J 37:69–91.  https://doi.org/10.1002/gj.902 CrossRefGoogle Scholar
  2. Al-Momani IF, Ataman OY, Anwari MA, Tuncel S, Kose C, Tuncel G (1995) Chemical composition of precipitation near an industrial area at Izmir, Turkey. Atmos Environ 29:1131–1143.  https://doi.org/10.1016/1352-2310(95)00027-V CrossRefGoogle Scholar
  3. Amery HA (2002) Irrigation planning in Lebanon: challenges and opportunities. In: Mehmet Ö, Biçak HA (eds) Modern and traditional irrigation technologies in the Eastern Mediterranean. IDRC 2002 publication, Ottawa, p 212Google Scholar
  4. Ammar R, Kazpard V, El Samrani AG, Amacha N, Saad Z, Chou L (2017) Hydrodynamic influence on reservoir sustainability in semi-arid climate: a physicochemical and environmental isotopic study. J Environ Manage 197:571–581.  https://doi.org/10.1016/j.jenvman.2017.04.030 CrossRefGoogle Scholar
  5. Assaker A (2016) Hydrologie et Biogéochimie du Bassin Versant du Fleuve Ibrahim: Un Observatoire du Fonctionnement de la Zone Critique au Liban. Ph.D. Thesis, Institut National Polytechnique de Toulouse (INP Toulouse), FranceGoogle Scholar
  6. Azzi V, Kazpard V, Lartiges B, Kobeissi A, Kanso A, El Samrani AG (2017) Trace metals in phosphate fertilizers used in Eastern Mediterranean countries. CLEAN Soil Air Water.  https://doi.org/10.1002/clen.201500988 Google Scholar
  7. Bakalowicz M (2010) Karst et ressources en eau souterraine: un atout pour le développement des pays méditerranéens. Sécheresse 21:1–6.  https://doi.org/10.1684/sec.2010.0275 Google Scholar
  8. Bakalowicz M, El Hakim M, El-Hajj A (2008) Karst groundwater resources in the countries of eastern Mediterranean: the example of Lebanon. Environ Geol 54:597–604.  https://doi.org/10.1007/s00254-007-0854-z CrossRefGoogle Scholar
  9. Bar-matthews M, Ayalon A (2004) Speleothems as palaeoclimate indicators, a case study from Soreq Cave located in the Eastern Mediterranean Region, Israel. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa. Kluwer Academic Publishers, Dordrecht, pp 363–391.  https://doi.org/10.1007/978-1-4020-2121-3 CrossRefGoogle Scholar
  10. Bou Saab H, Nassif N, El Samrani AG, Daoud R, Medawar S, Ouaïni N (2007) Suivi de la qualité bactériologique des eaux de surface (rivière Nahr Ibrahim, Liban). Rev Sci Eau 20:341.  https://doi.org/10.7202/016909ar Google Scholar
  11. Calmels D, Gaillardet J, François L (2014) Sensitivity of carbonate weathering to soil CO2 production by biological activity along a temperate climate transect. Chem Geol 390:74–86.  https://doi.org/10.1016/j.chemgeo.2014.10.010 CrossRefGoogle Scholar
  12. Cartwright I, Weaver TR, Cendón DI, Fifield LK, Tweed SO, Petrides B, Swane I (2012) Constraining groundwater flow, residence times, inter-aquifer mixing, and aquifer properties using environmental isotopes in the southeast Murray Basin, Australia. Appl Geochemistry 27:1698–1709.  https://doi.org/10.1016/j.apgeochem.2012.02.006 CrossRefGoogle Scholar
  13. Clark I, Fritz P (1997) Environmental Isotopes in Hydrogeology. Lewis Publishers, New YorkGoogle Scholar
  14. Daou C, Salloum M, Mouneimne AH, Legube B, Ouaini N (2013) Multidimensionnal analysis of two Lebanese surface water quality: Ibrahim and El-Kalb Rivers. J. Appl Sci Res 9:2777–2787Google Scholar
  15. Darwich T, Assaker A, Faour G, Noun M, Poupet P, Harfouche R (2015) Utilisation de la Télédétection et des Techniques SIG pour l’Évaluation et la Cartographie des Risques de Feux de Forêts dans le Bassin Versant du Nahr Ibrahim. In: Harfouche R, Poupet P (eds) Du Mont Liban Aux Sierras d’Espagne. Sols, Eau et Sociétés En Montagne. Archaeopress Publishing Ltd., Oxford, pp 137–146Google Scholar
  16. Diaw M, Faye S, Stichler W, Maloszewski P (2012) Isotopic and geochemical characteristics of groundwater in the Senegal River delta aquifer: implication of recharge and flow regime. Environ Earth Sci 66:1011–1020.  https://doi.org/10.1007/s12665-010-0710-4 CrossRefGoogle Scholar
  17. Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments. Prentice Hall, Upper Saddle RiverGoogle Scholar
  18. El Samrani AG, Kazpard V, Ouaïni N, Lartiges BS, Slim K, Saad Z (2005) Trace element carriers in river sediments (Ibrahim River-Lebanon): investigation on natural and anthropogenic inputs. Int J Civ Environ Eng 1:1–16Google Scholar
  19. Fayad A, Gascoin S, Faour G, Drapeau Lopez-MorenoJI, Page L, Le M, Escadafal R (2017) Snow hydrology in Mediterranean mountain regions: a review. J Hydrol 551:374–396.  https://doi.org/10.1016/j.jhydrol.2017.05.063 CrossRefGoogle Scholar
  20. Ford D, Williams P (2007) Karst hydrology and geomorphology, Karst hydrogeology and geomorphology. Wiley, West Sussex.  https://doi.org/10.1002/9781118684986 CrossRefGoogle Scholar
  21. Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262CrossRefGoogle Scholar
  22. Huang G, Sun J, Zhang Y, Chen Z, Liu F (2013) Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Sci Total Environ 463–464:209–221.  https://doi.org/10.1016/j.scitotenv.2013.05.078 CrossRefGoogle Scholar
  23. Im U (2013) Impact of sea-salt emissions on the model performance and aerosol chemical composition and deposition in the East Mediterranean coastal regions. Atmos Environ 75:329–340.  https://doi.org/10.1016/j.atmosenv.2013.04.034 CrossRefGoogle Scholar
  24. International Atomic Energy Agency (2009) VSMOW2 and SLAP2 Reference Sheet, Reference Sheet for International Measurement StandardsGoogle Scholar
  25. Jin L, Siegel DI, Lautz LK, Mitchell MJ, Dahms DE, Mayer B (2010) Calcite precipitation driven by the common ion effect during groundwater–surface-water mixing: a potentially common process in streams with geologic settings containing gypsum. Bull Geol Soc Am 122:1027–1038.  https://doi.org/10.1130/B30011.1 CrossRefGoogle Scholar
  26. Kanduc T, Sturm M, Zigon S, McIntosh J (2012) Tracing biogeochemical processes and pollution sources with stable isotopes in river systems: Kamniska Bistrica, North Slovenia. Biogeosciences Discuss 9:9711–9757.  https://doi.org/10.5194/bgd-9-9711-2012 CrossRefGoogle Scholar
  27. Kanduc T, Burnik Sturm M, McIntosh J (2013) Chemical dynamics and evaluation of biogeochemical processes in alpine river Kamniska Bistrica, North Slovenia. Aquat Geochem 19:323–346.  https://doi.org/10.1007/s10498-013-9197-4 CrossRefGoogle Scholar
  28. Kaufmann G (2009) Modelling karst geomorphology on different time scales. Geomorphology 106:62–77.  https://doi.org/10.1016/j.geomorph.2008.09.016 CrossRefGoogle Scholar
  29. Khair K, Aker N, Haddad F, Jurdi M, Hachach A (1994) The environmental impacts of humans on groundwater in Lebanon. Water Air Soil Pollut 78:37–49.  https://doi.org/10.1007/BF00475666 CrossRefGoogle Scholar
  30. Khalaf G (1984) Contribution à l’étude écologique des fleuves côtiers du Liban: 2. Cours moyen et inférieur du Nahr Ibrahim. Bull Mens la Société linnéenne Lyon 53:9–20CrossRefGoogle Scholar
  31. Korfali SI, Davies BE (2000) Total and extractable trace elements in Lebanese River sediments: dry season data. Environ Geochem Health 22:265–273CrossRefGoogle Scholar
  32. Korfali SI, Davies BE (2003) A comparison of metals in sediments and water in the river Nahr-Ibrahim, Lebanon: 1996 and 1999. Environ Geochem Health 25:41–50.  https://doi.org/10.1023/A:1021284126632 CrossRefGoogle Scholar
  33. Korfali SI, Davies BE (2004) The relationships of metals in river sediments (Nahr-Ibrahim, Lebanon) and adjacent floodplain soils. Agric Eng Int CIGR J Sci Res Dev 6:1–22.  https://doi.org/10.1007/s13398-014-0173-7.2 Google Scholar
  34. Korfali SI, Davies BE (2005) Seasonal variations of racte metal chemical forms in bed sediments of a karstic river in Lebanon: implications for self-purification. Environ Geochem Health 27:385–395.  https://doi.org/10.1007/s10653-004-7096-8 CrossRefGoogle Scholar
  35. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian Salinity Crisis. Nature 400:652–655CrossRefGoogle Scholar
  36. Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall Inc, Upper Saddle River, p 07458Google Scholar
  37. Lebanese Ministry of Hydraulics and Electrical Resources (1999) Annual average discharge of the Nahr Ibrahim RiverGoogle Scholar
  38. Li SL, Liu CQ, Li J, Lang YC, Ding H, Li L (2010) Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: isotopic and chemical constraints. Chem Geol 277:301–309.  https://doi.org/10.1016/j.chemgeo.2010.08.013 CrossRefGoogle Scholar
  39. Meier SD, Atekwana EA, Molwalefhe L, Atekwana EA (2015) Processes that control water chemistry and stable isotopic composition during the refilling of Lake Ngami in semiarid northwest Botswana. J Hydrol 527:420–432.  https://doi.org/10.1016/j.jhydrol.2015.04.050 CrossRefGoogle Scholar
  40. Mook WG (2001) Environmental isotopes in the hydrological cycle—principles and applications. IAEA UNESCO, Paris/ViennaGoogle Scholar
  41. Nader FH, Swennen R, Keppens E (2008) Calcitization/dedolomitization of Jurassic dolostones (Lebanon): results from petrographic and sequential geochemical analyses. Sedimentology 55:1467–1485.  https://doi.org/10.1111/j.1365-3091.2008.00953.x CrossRefGoogle Scholar
  42. Nakhlé KF (2003) Le Mercure, le Cadmium et le Plomb dans les Eaux Littorales Libanaises: Apports et Suivi au Moyen de Bioindicateurs Quatitatifs (Eponges, Bivalves et Gastéropodes). Ph.D. Thesis, Université Paris 7 Denis Diderot, FranceGoogle Scholar
  43. Roy S, Gaillardet J, Allègre CJ (1999) Geochemistry of dissolved and suspended loads of the Seine river, France: anthropogenic impact, carbonate and silicate weathering. Geochim Cosmochim Acta 63:1277–1292.  https://doi.org/10.1016/S0016-7037(99)00099-X CrossRefGoogle Scholar
  44. Saad Z, Kazpard V, El Samrani AG, Slim K (2005a) Chemical and isotopic composition of rainwater in coastal and highland regions in Lebanon. J Environ Hydrol 13:1–11Google Scholar
  45. Saad Z, Kazpard V, Slim K, Mroueh M (2005b) A hydrochemical and isotopic study of submarine fresh water along the coast in Lebanon. J Environ Hydrol 13:1–16Google Scholar
  46. Sene KJ, Marsh TJ, Hachache A (1999) An assessment of the difficulties in quantifying the surface water resources of Lebanon. Hydrol Sci J.  https://doi.org/10.1080/02626669909492204 Google Scholar
  47. Shaban A, Darwich T, Drapeau L, Gascoin S (2014) Climatic induced snowpack surfaces on Lebanon’s Mountains. Open Hydrol J 8:8–16CrossRefGoogle Scholar
  48. Shaban A, Darwich T, Assaker A, Poupet P, Harfouche R (2015) Evaluation des Caractéristiques Physiques et des Risques Naturels dans le Bassin Versant du Nahr Ibrahim. In: Harfouche R, Poupet P (eds) Du Mont Liban Aux Sierras d’Espagne Sols, Eau et Sociétés En Montagne. Archaeopress Publishing Ltd., Oxford, pp 39–50Google Scholar
  49. Singurindy O, Berkowitz B (2003) Flow, dissolution, and precipitation in dolomite. Water Resour Res 39:1143.  https://doi.org/10.1029/2002WR001624 Google Scholar
  50. Stallard RF, Edmond JM (1981) Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J Geophys Res 86:9844–9855CrossRefGoogle Scholar
  51. Sun H, Han J, Li D, Zhang S, Lu X (2010) Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China. Sci Total Environ 408:4749–4760.  https://doi.org/10.1016/j.scitotenv.2010.06.007 CrossRefGoogle Scholar
  52. Szramek K, Walter LM (2004) Impact of carbonate precipitation on riverine inorganic carbon mass transport from a mid-continent, forested watershed. Aquat Geochemistry 10:99–137CrossRefGoogle Scholar
  53. Szramek K, Walter LM, Kanduč T, Ogrinc N (2011) Dolomite versus calcite weathering in hydrogeochemically diverse watersheds established on bedded carbonates (Sava and Soča Rivers, Slovenia). Aquat Geochemistry 17:357–396.  https://doi.org/10.1007/s10498-011-9125-4 CrossRefGoogle Scholar
  54. Whipkey CE, Capo RC, Chadwick OA, Stewart BW (2000) The importance of sea spray to the cation budget of a coastal Hawaiian soil: a strontium isotope approach. Chem Geol 168:37–48.  https://doi.org/10.1016/S0009-2541(00)00187-X CrossRefGoogle Scholar
  55. Williams EL, Szramek KJ, Jin L, Ku TCW, Walter LM (2007) The carbonate system geochemistry of shallow groundwater-surface water systems in temperate glaciated watersheds (Michigan, USA): significance of open-system dolomite weathering. Bull Geol Soc Am 119:515–528.  https://doi.org/10.1130/B25967.1 CrossRefGoogle Scholar
  56. Zavadlav S, Kanduč T, McIntosh J, Lojen S (2013) Isotopic and chemical constraints on the biogeochemistry of dissolved inorganic carbon and chemical weathering in the Karst Watershed of Krka River (Slovenia). Aquat Geochemistry 19:209–230.  https://doi.org/10.1007/s10498-013-9188-5 CrossRefGoogle Scholar
  57. Zhu B, Yu J, Qin X, Rioual P, Xiong H (2012) Climatic and geological factors contributing to the natural water chemistry in an arid environment from watersheds in northern Xinjiang, China. Geomorphology 153–154:102–114.  https://doi.org/10.1016/j.geomorph.2012.02.014 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Geosciences Environment Toulouse, (UMR CNRS-UPS 5563 IRD 234)University of Toulouse (Paul Sabatier)ToulouseFrance
  2. 2.EDST-PRASE, Laboratoire Geoscience, Georessources and Environment (L2GE), Faculty of SciencesLebanese UniversityBeirutLebanon
  3. 3.Lebanese Scientific Research Council, Center of Remote SensingMansouriehLebanon

Personalised recommendations