Advertisement

Apoptosis

pp 1–13 | Cite as

CNOT3 contributes to cisplatin resistance in lung cancer through inhibiting RIPK3 expression

  • Lin Jing
  • Meng-En Zhai
  • Jian Cui
  • Xin-Yu Fan
  • Yuan-Yuan Cheng
  • Jian-Li JiangEmail author
  • Zhi-Nan ChenEmail author
Article
  • 78 Downloads

Abstract

Chemotherapeutic resistance always results in poor clinical outcomes of cancer patients and its intricate mechanisms are large obstacles in overcoming drug resistance. CCR4-NOT transcription complex subunit 3 (CNOT3), a post-translational regulator, is suggested to be involved in cancer development and progression. However, its role in chemotherapeutic resistance is not well understood. In this study, after screening the CNOT3 mRNA in a cancer microarray database called Oncomine and examining the expression levels of CNOT3 mRNA in normal tissues and lung cancer tissues, we found that CNOT3 was up-regulated in lung cancer tissues. Besides, its high-expression was associated with poor prognosis of lung cancer patients. We also found higher expression level of CNOT3 and lower expression level of receptor-interacting protein kinase 3 (RIPK3) in cisplatin-resistant A549 (A549/DDP) cells, and knocking down CNOT3 expression could sensitize A549/DDP cells to cisplatin-induced apoptosis. We demonstrated that CNOT3 depletion up-regulated the expression level of RIPK3 and the enhanced apoptosis was mediated by the elevated RIPK3 to further trigger Caspase 8 activation. Taken together, our results reveal a role of CNOT3 in cisplatin resistance of lung cancer and provide a potential target for lung cancer therapy.

Keywords

Cisplatin resistance CNOT3 Lung cancer Apoptosis RIPK3 

Notes

Funding

This work was supported by the National Basic Research Program of China (Grant No. 2015CB553701), and the National Science and Technology Major Project (Grant No. 2017ZX10203205-004-002).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

10495_2019_1550_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)
10495_2019_1550_MOESM2_ESM.tif (236 kb)
Supplementary material 2 (TIFF 235 kb)
10495_2019_1550_MOESM3_ESM.tif (336 kb)
Supplementary material 3 (TIFF 336 kb)

References

  1. 1.
    Chen W, Sun K, Zheng R et al (2018) Cancer incidence and mortality in China, 2014. Chin J Cancer Res 30:1–12CrossRefGoogle Scholar
  2. 2.
    Kim M, Jung JY, Choi S et al (2017) GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy. Autophagy 13:149–168CrossRefGoogle Scholar
  3. 3.
    McCabe KE, Bacos K, Lu D et al (2014) Triggering necroptosis in cisplatin and IAP antagonist-resistant ovarian carcinoma. Cell Death Dis 5:e1496CrossRefGoogle Scholar
  4. 4.
    Fujiwara N, Inoue J, Kawano T et al (2015) miR-634 Activates the mitochondrial apoptosis pathway and enhances chemotherapy-induced cytotoxicity. Cancer Res 75:3890–3901CrossRefGoogle Scholar
  5. 5.
    Zhao L, Li R, Gan YH (2018) Knockdown of Yin Yang 1 enhances anticancer effects of cisplatin through protein phosphatase 2A-mediated T308 dephosphorylation of AKT. Cell Death Dis 9:747CrossRefGoogle Scholar
  6. 6.
    Shirai YT, Suzuki T, Morita M et al (2014) Multifunctional roles of the mammalian CCR6-NOT complex in physiological phenomena. Front Genet 5:286CrossRefGoogle Scholar
  7. 7.
    Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8:113–126CrossRefGoogle Scholar
  8. 8.
    Tucker M, Valencia-Sanchez MA, Staples RR et al (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104:377–386CrossRefGoogle Scholar
  9. 9.
    Morita M, Oike Y, Nagashima T et al (2011) Obesity resistance and increased hepatic expression of catabolism-related mRNAs in Cnot3 ± mice. EMBO J 30:4678–4691CrossRefGoogle Scholar
  10. 10.
    Watanabe C, Morita M, Hayata T et al (2014) Stability of mRNA influences osteoporotic bone mass via CNOT3. Proc Natl Acad Sci USA 111:2692–2697CrossRefGoogle Scholar
  11. 11.
    Suzuki T, Kikuguchi C, Sharma S et al (2015) CNOT3 suppression promotes necroptosis by stabilizing mRNAs for cell death-inducing proteins. Sci Rep 5:14779CrossRefGoogle Scholar
  12. 12.
    Diaz-Pena R, Aransay AM, Suarez-Alvarez B et al (2012) A high density SNP genotyping approach within the 19q13 chromosome region identifies an association of a CNOT3 polymorphism with ankylosing spondylitis. Ann Rheum Dis 71:714–717CrossRefGoogle Scholar
  13. 13.
    Venturini G, Rose AM, Shah AZ et al (2012) CNOT3 is a modifier of PRPF31 mutations in retinitis pigmentosa with incomplete penetrance. PLoS Genet 8:e1003040CrossRefGoogle Scholar
  14. 14.
    De Keersmaecker K, Atak ZK, Li N et al (2013) Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet 45:186–190CrossRefGoogle Scholar
  15. 15.
    Cejas P, Cavazza A, Yandava CN et al (2017) Transcriptional regulator CNOT3 defines an aggressive colorectal cancer subtype. Cancer Res 77:766–779CrossRefGoogle Scholar
  16. 16.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  17. 17.
    Zhou B, Liu J, Ren Z et al (2017) Cnot3 enhances human embryonic cardiomyocyte proliferation by promoting cell cycle inhibitor mRNA degradation. Sci Rep 7:1500CrossRefGoogle Scholar
  18. 18.
    Shirai YT, Mizutani A, Nishijima S et al (2019) CNOT3 targets negative cell cycle regulators in non-small cell lung cancer development. Oncogene 38:2580–2594CrossRefGoogle Scholar
  19. 19.
    Kasof GM, Prosser JC, Liu D et al (2000) The RIP-like kinase, RIP3, induces apoptosis and NF-kappaB nuclear translocation and localizes to mitochondria. FEBS Lett 473:285–291CrossRefGoogle Scholar
  20. 20.
    Cho YS, Challa S, Moquin D et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123CrossRefGoogle Scholar
  21. 21.
    Jing L, Song F, Liu Z et al (2018) MLKL-PITPalpha signaling-mediated necroptosis contributes to cisplatin-triggered cell death in lung cancer A549 cells. Cancer Lett 414:136–146CrossRefGoogle Scholar
  22. 22.
    Sun L, Wang H, Wang Z et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227CrossRefGoogle Scholar
  23. 23.
    Mandal P, Berger SB, Pillay S et al (2014) RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell 56:481–495CrossRefGoogle Scholar
  24. 24.
    Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133:693–703CrossRefGoogle Scholar
  25. 25.
    Yamaguchi T, Suzuki T, Sato T et al (2018) The CCR1-NOT deadenylase complex controls Atg7-dependent cell death and heart function. Sci Signal 11:eaan3638CrossRefGoogle Scholar
  26. 26.
    Li X, Morita M, Kikuguchi C et al (2017) Adipocyte-specific disruption of mouse CNOT3 causes lipodystrophy. FEBS Lett 591:358–368CrossRefGoogle Scholar
  27. 27.
    Vicente C, Stirparo R, Demeyer S et al (2018) The CCR27-NOT complex is a tumor suppressor in Drosophila melanogaster eye cancer models. J Hematol Oncol 11:108CrossRefGoogle Scholar
  28. 28.
    Richter-Pechanska P, Kunz JB, Hof J et al (2017) Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. Blood Cancer J 7:e523CrossRefGoogle Scholar
  29. 29.
    Collart MA, Kassem S, Villanyi Z (2017) Mutations in the NOT Genes or in the translation machinery similarly display increased resistance to histidine starvation. Front Genet 8:61CrossRefGoogle Scholar
  30. 30.
    He S, Wang L, Miao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111CrossRefGoogle Scholar
  31. 31.
    Sun X, Lee J, Navas T et al (1999) RIP3, a novel apoptosis-inducing kinase. J Biol Chem 274:16871–16875CrossRefGoogle Scholar
  32. 32.
    Yu PW, Huang BC, Shen M et al (1999) Identification of RIP3, a RIP-like kinase that activates apoptosis and NFkappaB. Curr Biol 9:539–542CrossRefGoogle Scholar
  33. 33.
    Dondelinger Y, Aguileta MA, Goossens V et al (2013) RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ 20:1381–1392CrossRefGoogle Scholar
  34. 34.
    Moriwaki K, Bertin J, Gough PJ et al (2015) A RIPK3-caspase 8 complex mediates atypical pro-IL-1beta processing. J Immunol 194:1938–1944CrossRefGoogle Scholar
  35. 35.
    Moujalled DM, Cook WD, Okamoto T et al (2013) TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1. Cell Death Dis 4:e465CrossRefGoogle Scholar
  36. 36.
    Cook WD, Moujalled DM, Ralph TJ et al (2014) RIPK1- and RIPK3-induced cell death mode is determined by target availability. Cell Death Differ 21:1600–1612CrossRefGoogle Scholar
  37. 37.
    Geserick P, Wang J, Schilling R et al (2015) Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis 6:e1884CrossRefGoogle Scholar
  38. 38.
    Morgan JE, Prola A, Mariot V et al (2018) Necroptosis mediates myofibre death in dystrophin-deficient mice. Nat Commun 9:3655CrossRefGoogle Scholar
  39. 39.
    Yoon S, Kovalenko A, Bogdanov K et al (2017) MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. Immunity 47:51–65CrossRefGoogle Scholar
  40. 40.
    Gong YN, Guy C, Olauson H et al (2017) ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169:286–300CrossRefGoogle Scholar
  41. 41.
    Ito K, Takahashi A, Morita M et al (2011) The role of the CNOT1 subunit of the CCR41-NOT complex in mRNA deadenylation and cell viability. Protein Cell 2:755–763CrossRefGoogle Scholar
  42. 42.
    Ito K, Inoue T, Yokoyama K et al (2011) CNOT2 depletion disrupts and inhibits the CCR42-NOT deadenylase complex and induces apoptotic cell death. Genes Cells 16:368–379CrossRefGoogle Scholar
  43. 43.
    Inbal B, Shani G, Cohen O et al (2000) Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol 20:1044–1054CrossRefGoogle Scholar
  44. 44.
    Joshi S, Wels C, Beham-Schmid C et al (2015) Galpha13 mediates human cytomegalovirus-encoded chemokine receptor US28-induced cell death in melanoma. Int J Cancer 137:1503–1508CrossRefGoogle Scholar
  45. 45.
    Healy JA, Nugent A, Rempel RE et al (2016) GNA13 loss in germinal center B cells leads to impaired apoptosis and promotes lymphoma in vivo. Blood 127:2723–2731CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lin Jing
    • 1
    • 2
  • Meng-En Zhai
    • 3
  • Jian Cui
    • 1
    • 2
  • Xin-Yu Fan
    • 1
    • 2
  • Yuan-Yuan Cheng
    • 1
    • 2
  • Jian-Li Jiang
    • 1
    • 2
    Email author
  • Zhi-Nan Chen
    • 1
    • 2
    Email author
  1. 1.National Translational Science Center for Molecular MedicineXi’anChina
  2. 2.Department of Cell Biology, School of Basic MedicineThe Fourth Military Medical UniversityXi’anChina
  3. 3.Department of Cardiovascular SurgeryXijing Hospital, The Fourth Military Medical UniversityXi’anChina

Personalised recommendations