pp 1–18 | Cite as

BDNF-mediated mitophagy alleviates high-glucose-induced brain microvascular endothelial cell injury

  • Hong JinEmail author
  • Yi Zhu
  • Yiping Li
  • Xiuyu Ding
  • Wenqi Ma
  • Xiqiong Han
  • Bilei Wang


Endothelial cell dysfunction and diabetic vascular complications are intrinsically linked. Although BDNF plays a protective role in cerebral microvascular complications caused by diabetes, the mechanisms of this activity are not fully clear. In this study, we investigated the role of BDNF in the hyperglycemic injury of BMECs and its associated intracellular signal transduction pathways. BMECs were treated with 33 mM glucose to imitate the endothelium under hyperglycemic conditions. The high-glucose treatment caused cell dysfunction, as evaluated by oxidative stress and cell apoptosis, which could be alleviated by BDNF. In addition, BDNF preserved mitochondrial function as assessed by mPTP opening, mitochondrial membrane potential, calcium content, and mitochondrial biogenesis markers. Western blot analysis of LC3-II, p62, and TOMM20 and the detection of mRFP-GFP-LC3 adenovirus for autophagy flux revealed that BDNF enhanced autophagy flux. Furthermore, BDNF activated mitophagy, which was confirmed by the observed colocalization of LC3-II with BNIP3 and from transmission electron microscopy observations. The HIF-1α/BNIP3 signaling pathway was associated with BDNF/TrkB-induced mitophagy. In addition, BDNF-induced mitophagy played a protective role against BMEC damage under hyperglycemia. Thus, the results of this study suggest that BDNF/TrkB/HIF-1α/BNIP3-mediated mitophagy protects BMECs from hyperglycemia.


BDNF BMECs Hyperglycemia Mitochondrial function Mitophagy 



Brain-derived neurotrophic factor


Brain microvascular endothelial cells


Mitochondrial permeability transition pore


Microtubule-associated protein 1 light chain 3B




Translocase of outer mitochondrial membrane 20


Hypoxia-inducible factor-1α


Tropomyosin receptor or kinase B


BCL2/adenovirus E1B 19 kDa protein-interacting protein 3



This work was supported by the Fundamental Research Funds for the Central Universities and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0174) and the Jiangsu Provincial Health and Wellness Committee Research Project (No. H2018001).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest.

Supplementary material

10495_2019_1535_MOESM1_ESM.docx (888 kb)
Supplementary material 1 (DOCX 888 KB)


  1. 1.
    Schiel R, Stachow R, Hermann T et al (2018) Rehabilitation in Germany 2004–2016 A Multicenter Analysis Over a Period of 13 Years in Children and Adolescents with Diabetes Mellitus. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes AssociationGoogle Scholar
  2. 2.
    Xu R, Yang R, Hu H, Xi Q, Wan H, Wu Y (2013) Diabetes alters the expression of partial vasoactivators in cerebral vascular disease susceptible regions of the diabetic rat. Diabetol Metab Syndr 5:63CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cantu-Brito C, Mimenza-Alvarado A, Sanchez-Hernandez JJ (2010) Diabetes mellitus and aging as a risk factor for cerebral vascular disease: epidemiology, pathophysiology and prevention. Revista de investigacion clinica 62:333–342PubMedGoogle Scholar
  4. 4.
    Ergul A, Abdelsaid M, Fouda AY, Fagan SC (2014) Cerebral neovascularization in diabetes: implications for stroke recovery and beyond. J Cereb Blood Flow Metab 34:553–563CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li H, Gao A, Feng D et al (2014) Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury. Transl Stroke Res 5:618–626CrossRefPubMedGoogle Scholar
  6. 6.
    Guo S, Deng W, Xing C, Zhou Y, Ning M, Lo EH (2018) Effects of aging, hypertension and diabetes on the mouse brain and heart vasculomes. Neurobiol Dis. Google Scholar
  7. 7.
    Guan G, Han H, Yang Y, Jin Y, Wang X, Liu X (2014) Neferine prevented hyperglycemia-induced endothelial cell apoptosis through suppressing ROS/Akt/NF-kappaB signal. Endocrine 47:764–771CrossRefPubMedGoogle Scholar
  8. 8.
    Zhao Y, Huang S, Liu J et al (2018) Mitophagy contributes to the pathogenesis of inflammatory diseases. Inflammation 41(5):1590–1600CrossRefPubMedGoogle Scholar
  9. 9.
    Di Rita A, D’Acunzo P, Simula L, Campello S, Strappazzon F, Cecconi F (2018) AMBRA1-mediated mitophagy counteracts oxidative stress and apoptosis induced by neurotoxicity in human neuroblastoma SH-SY5Y cells. Front Cell Neurosci 12:92CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lohitesh K, Saini H, Srivastava A, Mukherjee S, Roy A, Chowdhury R (2018) Autophagy inhibition potentiates SAHAmediated apoptosis in glioblastoma cells by accumulation of damaged mitochondria. Oncol Rep 39:2787–2796PubMedGoogle Scholar
  11. 11.
    Chakrabarty S, Kabekkodu SP, Singh RP, Thangaraj K, Singh KK, Satyamoorthy K (2018) Mitochondria in health and disease. Mitochondrion 43:25–29CrossRefPubMedGoogle Scholar
  12. 12.
    Abdelwahid E, Stulpinas A, Kalvelyte A (2017) Effective agents targeting the mitochondria and apoptosis to protect the heart. Curr Pharm Des 23:1153–1166CrossRefPubMedGoogle Scholar
  13. 13.
    Thangaraj A, Periyasamy P (2018) HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy 14(9):1596–1619.CrossRefGoogle Scholar
  14. 14.
    Lan R, Wu JT, Wu T et al (2018) Mitophagy is activated in brain damage induced by cerebral ischemia and reperfusion via the PINK1/Parkin/p62 signalling pathway. Brain Res Bull 142:63–77CrossRefGoogle Scholar
  15. 15.
    Marshall J, Zhou XZ, Chen G et al (2018) Antidepression action of BDNF requires and is mimicked by Galphai1/3 expression in the hippocampus. 115:e3549–e3558Google Scholar
  16. 16.
    Eyileten C, Zaremba M, Janicki PK et al (2016) Serum brain-derived neurotrophic factor is related to platelet reactivity but not to genetic polymorphisms within BDNF encoding gene in patients with type 2 diabetes. Med Sci Monit 22:69–76CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li B, Lang N, Cheng ZF (2016) Serum levels of brain-derived neurotrophic factor are associated with diabetes risk, complications, and obesity: a cohort study from chinese patients with type 2 diabetes. Mol Neurobiol 53:5492–5499CrossRefPubMedGoogle Scholar
  18. 18.
    Jin H, Chen Y, Wang B et al (2018) Association between brain-derived neurotrophic factor and von Willebrand factor levels in patients with stable coronary artery disease. BMC Cardiovasc Disord 18:23CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wood J, Tse MCL, Yang X et al (2018) BDNF mimetic alleviates body weight gain in obese mice by enhancing mitochondrial biogenesis in skeletal muscle. Metabolism 87:113–122Google Scholar
  20. 20.
    Navaratna D, Guo SZ, Hayakawa K, Wang X, Gerhardinger C, Lo EH (2011) Decreased cerebrovascular brain-derived neurotrophic factor-mediated neuroprotection in the diabetic brain. Diabetes 60:1789–1796CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Navaratna D, Fan X, Leung W et al (2013) Cerebrovascular degradation of TRKB by MMP9 in the diabetic brain. J Clin Invest 123:3373–3377CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huang C, Zhang Y, Kelly DJ et al (2016) Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Sci Rep 6:29196CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW, Thiele CJ (2006) Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res 66:4249–4255CrossRefPubMedGoogle Scholar
  24. 24.
    Gao Y, Jing M, Ge R, Lang L (2016) Induction of hypoxia-inducible factor-1alpha by BDNF protects retinoblastoma cells against chemotherapy-induced apoptosis. Molecular cellular biochemistry 414:77–84CrossRefPubMedGoogle Scholar
  25. 25.
    Feng CC, Lin CC, Lai YP et al (2016) Hypoxia suppresses myocardial survival pathway through HIF-1alpha-IGFBP-3-dependent signaling and enhances cardiomyocyte autophagic and apoptotic effects mainly via FoxO3a-induced BNIP3 expression. Growth Factors (Chur. Switzerland) 34:73–86CrossRefGoogle Scholar
  26. 26.
    Wu H, Huang S, Chen Z, Liu W, Zhou X, Zhang D (2015) Hypoxia-induced autophagy contributes to the invasion of salivary adenoid cystic carcinoma through the HIF-1alpha/BNIP3 signaling pathway. Mol Med Rep 12:6467–6474CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hsieh DJ, Kuo WW, Lai YP et al (2015) 17beta-Estradiol and/or estrogen receptor beta attenuate the autophagic and apoptotic effects induced by prolonged hypoxia through HIF-1alpha-mediated BNIP3 and IGFBP-3 signaling blockage. Cell Physiol Biochem 36:274–284CrossRefPubMedGoogle Scholar
  28. 28.
    Thongchot S, Yongvanit P, Loilome W et al (2014) High expression of HIF-1alpha, BNIP3 and PI3KC3: hypoxia-induced autophagy predicts cholangiocarcinoma survival and metastasis. Asian Pacific J Cancer Prev 15:5873–5878CrossRefGoogle Scholar
  29. 29.
    Rui L, Weiyi L, Yu M et al (2018) The serine/threonine protein kinase of Streptococcus suis serotype 2 affects the ability of the pathogen to penetrate the blood-brain barrier. Cell Microbiol 20:e12862CrossRefPubMedGoogle Scholar
  30. 30.
    Zhu X, Zhou Y, Cai W, Sun H, Qiu L (2017) Salusin-beta mediates high glucose-induced endothelial injury via disruption of AMPK signaling pathway. Biochem Biophys Res Commun 491:515–521CrossRefPubMedGoogle Scholar
  31. 31.
    Fiorentino TV, Prioletta A, Zuo P, Folli F (2013) Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 19:5695–5703CrossRefPubMedGoogle Scholar
  32. 32.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rigothier C, Saleem MA, Bourget C, Mathieson PW, Combe C, Welsh GI (2016) Nuclear translocation of IQGAP1 protein upon exposure to puromycin aminonucleoside in cultured human podocytes: ERK pathway involvement. Cell Signal 28:1470–1478CrossRefPubMedGoogle Scholar
  34. 34.
    Chavez-Valdez R, Martin LJ, Razdan S, Gauda EB, Northington FJ (2014) Sexual dimorphism in BDNF signaling after neonatal hypoxia-ischemia and treatment with necrostatin-1. Neuroscience 260:106–119CrossRefPubMedGoogle Scholar
  35. 35.
    Wessels JM, Wu L, Leyland NA, Wang H, Foster WG (2014) The brain-uterus connection: brain derived neurotrophic factor (BDNF) and its receptor (Ntrk2) are conserved in the mammalian uterus. PloS one 9:e94036CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Angelova PR, Abramov AY (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 592:692–702CrossRefPubMedGoogle Scholar
  37. 37.
    Yu T, Dohl J, Chen Y, Gasier HG, Deuster PA (2019) Astaxanthin but not quercetin preserves mitochondrial integrity and function, ameliorates oxidative stress, and reduces heat-induced skeletal muscle injury. J Cell Physiol. Google Scholar
  38. 38.
    Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111:1208–1221CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Anne Stetler R, Leak RK, Gao Y, Chen J (2013) The dynamics of the mitochondrial organelle as a potential therapeutic target. J Cereb Blood Flow Metab 33:22–32CrossRefPubMedGoogle Scholar
  40. 40.
    Eyileten C, Kaplon-Cieslicka A, Mirowska-Guzel D (2017) Antidiabetic effect of brain-derived neurotrophic factor and its association with inflammation in type 2. Diabetes Mellit. 2017:2823671Google Scholar
  41. 41.
    Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 56:182–188CrossRefPubMedGoogle Scholar
  42. 42.
    Suzuki S, Koshimizu H, Adachi N et al (2017) Functional interaction between BDNF and mGluR II in vitro: BDNF down-regulated mGluR II gene expression and an mGluR II agonist enhanced BDNF-induced BDNF gene expression in rat cerebral cortical neurons. Peptides 89:42–49CrossRefPubMedGoogle Scholar
  43. 43.
    Bathina S, Srinivas N, Das UN (2016) BDNF protects pancreatic beta cells (RIN5F) against cytotoxic action of alloxan, streptozotocin, doxorubicin and benzo(a)pyrene in vitro. Metabolism 65:667–684CrossRefPubMedGoogle Scholar
  44. 44.
    Xiong W, Hua J, Liu Z et al (2018) PTEN induced putative kinase 1 (PINK1) alleviates angiotensin II-induced cardiac injury by ameliorating mitochondrial dysfunction. Int J Cardiol 266:198–205CrossRefPubMedGoogle Scholar
  45. 45.
    Del Papa N, Pignataro F (2018) The role of endothelial progenitors in the repair of vascular damage in systemic sclerosis. Front Immunol 9:1383CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fang L, Li X, Zhong Y et al (2015) Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats. J Neurochem 135:431–440CrossRefPubMedGoogle Scholar
  47. 47.
    Lv Q, Gu C, Chen C (2014) Venlafaxine protects methylglyoxal-induced apoptosis in the cultured human brain microvascular endothelial cells. Neurosci Lett 569:99–103CrossRefPubMedGoogle Scholar
  48. 48.
    Kang J, Jia Z, Ping Y et al (2018) Testosterone alleviates mitochondrial ROS accumulation and mitochondria-mediated apoptosis in the gastric mucosa of orchiectomized rats. Arch Biochem Biophys 649:53–59CrossRefPubMedGoogle Scholar
  49. 49.
    Zhou J, Wang H, Shen R et al (2018) Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Am J Transl Res 10:1887–1899PubMedPubMedCentralGoogle Scholar
  50. 50.
    Ma J, Zhao S, Gao G, Chang H, Ma P, Jin B (2015) Probucol protects against asymmetric dimethylarginine-induced apoptosis in the cultured human brain microvascular endothelial cells. J Mol Neurosci 57:546–553CrossRefPubMedGoogle Scholar
  51. 51.
    Meek TH, Wisse BE, Thaler JP et al (2013) BDNF action in the brain attenuates diabetic hyperglycemia via insulin-independent inhibition of hepatic glucose production. Diabetes 62:1512–1518CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Liu Y, Tao L, Fu X, Zhao Y, Xu X (2013) BDNF protects retinal neurons from hyperglycemia through the TrkB/ERK/MAPK pathway. Mol Med Rep 7:1773–1778CrossRefPubMedGoogle Scholar
  53. 53.
    Jiang H, Huang S, Li X, Li X, Zhang Y, Chen ZY (2015) Tyrosine kinase receptor B protects against coronary artery disease and promotes adult vasculature integrity by regulating Ets1-mediated VE-cadherin expression. Arterioscler Thromb Vasc Biol 35:580–588CrossRefPubMedGoogle Scholar
  54. 54.
    Monnier A, Prigent-Tessier A, Quirie A et al (2017) Brain-derived neurotrophic factor of the cerebral microvasculature: a forgotten and nitric oxide-dependent contributor of brain-derived neurotrophic factor in the brain. Acta Physiolo (Oxford England) 219:790–802CrossRefGoogle Scholar
  55. 55.
    Meuchel LW, Thompson MA, Cassivi SD, Pabelick CM, Prakash YS (2011) Neurotrophins induce nitric oxide generation in human pulmonary artery endothelial cells. Cardiovasc Res 91:668–676CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Han X, Wang B, Sun Y et al (2018) Metformin modulates high glucose-incubated human umbilical vein endothelial cells proliferation and apoptosis through AMPK/CREB/BDNF pathway. Front Pharmacol 9:1266CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Yu F, Liu Y, Xu J (2018) Pro-BDNF contributes to hypoxia/reoxygenation injury in myocardial microvascular endothelial cells: roles of receptors p75(NTR) and sortilin and activation of JNK and Caspase 3. 2018:3091424Google Scholar
  58. 58.
    Saito T, Sadoshima J (2015) Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res 116:1477–1490CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Liu L, Sakakibara K, Chen Q, Okamoto K (2014) Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 24:787–795CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Xu Z, Lv XA, Dai Q, Lu M, Jin Z (2018) Exogenous BDNF increases mitochondrial pCREB and alleviates neuronal metabolic defects following mechanical injury in a MPTP-dependent way. Mol Neurobiol 55:3499–3512CrossRefPubMedGoogle Scholar
  61. 61.
    Wu CL, Chen SD, Yin JH, Hwang CS, Yang DI (2016) Nuclear factor-kappaB-dependent Sestrin2 induction mediates the antioxidant effects of BDNF against mitochondrial inhibition in rat cortical neurons. Mol Neurobiol 53:4126–4142CrossRefPubMedGoogle Scholar
  62. 62.
    Ma WQ, Sun XJ, Wang Y, Zhu Y, Han XQ, Liu NF (2018) Restoring mitochondrial biogenesis with metformin attenuates beta-GP-induced phenotypic transformation of VSMCs into an osteogenic phenotype via inhibition of PDK4/oxidative stress-mediated apoptosis. Mol Cell Endocrinol, 479:39–53Google Scholar
  63. 63.
    Nikoletopoulou V, Sidiropoulou K, Kallergi E, Dalezios Y, Tavernarakis N (2017) Modulation of autophagy by BDNF underlies synaptic plasticity. Cell Metab 26:230–242.e235CrossRefPubMedGoogle Scholar
  64. 64.
    Song X, Liu B, Cui L et al (2017) Silibinin ameliorates anxiety/depression-like behaviors in amyloid beta-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus. Physiol Behav 179:487–493CrossRefPubMedGoogle Scholar
  65. 65.
    Mazouffre C, Geyl S, Perraud A et al (2017) Dual inhibition of BDNF/TrkB and autophagy: a promising therapeutic approach for colorectal cancer. 21:2610–2622Google Scholar
  66. 66.
    Catrina SB (2014) Impaired hypoxia-inducible factor (HIF) regulation by hyperglycemia. J Mol Med (Berlin Germany) 92:1025–1034CrossRefGoogle Scholar
  67. 67.
    Yu WY, Sun W, Yu DJ, Zhao TL, Wu LJ, Zhuang HR (2018) Adipose-derived stem cells improve neovascularization in ischemic flaps in diabetic mellitus through HIF-1alpha/VEGF pathway. Eur Rev Med Pharmacol Sci 22:10–16PubMedGoogle Scholar
  68. 68.
    Krishan P, Singh G, Bedi O (2017) Carbohydrate restriction ameliorates nephropathy by reducing oxidative stress and upregulating HIF-1alpha levels in type-1 diabetic rats. J Diabetes Metab Disorders 16:47CrossRefGoogle Scholar
  69. 69.
    Lin CY, Hung SY, Chen HT et al (2014) Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells. Biochem Pharmacol 91:522–533CrossRefPubMedGoogle Scholar
  70. 70.
    Chourasia AH, Tracy K, Frankenberger C et al (2015) Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep 16:1145–1163CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Song J, Yoon D, Christensen RD, Horvathova M, Thiagarajan P, Prchal JT (2015) HIF-mediated increased ROS from reduced mitophagy and decreased catalase causes neocytolysis. J Mol Med (Berlin Germany) 93:857–866CrossRefGoogle Scholar
  72. 72.
    Segers VFM, Brutsaert DL, De Keulenaer GW (2018) Cardiac remodeling: endothelial cells have more to say than just NO. Front Physiol 9:382CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hu J, Wang S, Xiong Z et al (2018) Exosomal Mst1 transfer from cardiac microvascular endothelial cells to cardiomyocytes deteriorates diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 1864:3639–3649CrossRefPubMedGoogle Scholar
  74. 74.
    Sniegon I, Priess M, Heger J, Schulz R, Euler G (2017) Endothelial mesenchymal transition in hypoxic microvascular endothelial cells and paracrine induction of cardiomyocyte apoptosis are mediated via TGFbeta(1)/SMAD signaling. Int J Mol Sci 18:2290CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Wang F, Jia J, Lal N et al (2016) High glucose facilitated endothelial heparanase transfer to the cardiomyocyte modifies its cell death signature. Cardiovasc Res 112:656–668CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight 2Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hong Jin
    • 1
    Email author
  • Yi Zhu
    • 1
  • Yiping Li
    • 1
  • Xiuyu Ding
    • 2
  • Wenqi Ma
    • 1
  • Xiqiong Han
    • 1
  • Bilei Wang
    • 1
  1. 1.Department of Cardiology, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.Nanjing Ninghai Middle SchoolNanjingPeople’s Republic of China

Personalised recommendations