pp 1–24 | Cite as

Targeting phosphatidylserine for radionuclide-based molecular imaging of apoptosis

  • Melinda Wuest
  • Amanda Perreault
  • Susan Richter
  • James C. Knight
  • Frank WuestEmail author


One major characteristic of programmed cell death (apoptosis) results in the increased expression of phosphatidylserine (PS) on the outer membrane of dying cells. Consequently, PS represents an excellent target for non-invasive imaging of apoptosis by single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Annexin V is a 36 kDa protein which binds with high affinity to PS in the presence of Ca2+ ions. This makes radiolabeled annexins valuable apoptosis imaging agents for clinical and biomedical research applications for monitoring apoptosis in vivo. However, the use of radiolabeled annexin V for in vivo imaging of cell death has been met with a variety of challenges which have prevented its translation into the clinic. These difficulties include: complicated and time-consuming radiolabeling procedures, sub-optimal biodistribution, inadequate pharmacokinetics leading to poor tumour-to-blood contrast ratios, reliance upon Ca2+ concentrations in vivo, low tumor tissue penetration, and an incomplete understanding of what constitutes the best imaging protocol following induction of apoptosis. Therefore, new concepts and improved strategies for the development of PS-binding radiotracers are needed. Radiolabeled PS-binding peptides and various Zn(II) complexes as phosphate chemosensors offer an innovative strategy for radionuclide-based molecular imaging of apoptosis with PET and SPECT. Radiolabeled peptides and Zn(II) complexes provide several advantages over annexin V including better pharmacokinetics due to their smaller size, better availability, simpler synthesis and radiolabeling strategies as well as facilitated tissue penetration due to their smaller size and faster blood clearance profile allowing for optimized image contrast. In addition, peptides can be structurally modified to improve metabolic stability along with other pharmacokinetic and pharmacodynamic properties. The present review will summarize the current status of radiolabeled annexins, peptides and Zn(II) complexes developed as radiotracers for imaging apoptosis through targeting PS utilizing PET and SPECT imaging.


Phosphatidylserine Positron emission tomography (PET) Single photon emission computed tomography (SPECT) Annexin V Peptides Molecular imaging 



We gratefully acknowledge the support of this research by the Dianne and Irving Kipnes Foundation, the Alberta Cancer Foundation (ACF) and the Canadian Foundation for Innovation (CFI).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Kerr JF, Wylie AH, Currie AR (1972) Apoptosis: the basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811CrossRefPubMedGoogle Scholar
  3. 3.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–777CrossRefPubMedGoogle Scholar
  4. 4.
    Syeed SA, Vohra H, Gupta A, Ganguly NK (2001) Apoptosis: molecular machinery. Curr Sci 80:349–360Google Scholar
  5. 5.
    Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, La Face DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556CrossRefPubMedGoogle Scholar
  6. 6.
    Schutters K, Reutelingsperger C (2010) Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 15:1072–1082CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zwaal RF, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62:971–988CrossRefPubMedGoogle Scholar
  8. 8.
    Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA (1999) Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 107:489–506CrossRefPubMedGoogle Scholar
  9. 9.
    Green AM, Steinmetz ND (2002) Monitoring apoptosis in real time. Cancer J 8:82–92CrossRefPubMedGoogle Scholar
  10. 10.
    Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, Heidendal GA, Reutelingsperger CP (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050PubMedGoogle Scholar
  11. 11.
    Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371CrossRefPubMedGoogle Scholar
  12. 12.
    Lahorte CM, Vanderheyden JL, Steinmetz N, Van de Wiele C, Dierckx RA, Slegers G (2004) Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med 31:887–910CrossRefGoogle Scholar
  13. 13.
    Bazzi MD, Nelsestuen GL (1991) Highly sequential binding of protein kinase C and related proteins to membranes. Biochemistry 30:7970–7977CrossRefPubMedGoogle Scholar
  14. 14.
    Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420PubMedGoogle Scholar
  15. 15.
    Thiagarajan P, Tait JF (1990) Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. J Biol Chem 265:17420–17423PubMedGoogle Scholar
  16. 16.
    Lahorte C, Dumont F, Slegers G, Van De Wiele C, Dierckx RA, Philippe J (2000) Synthesis and in vitro stability of 123I-labelled annexin V: a potential agent for spect imaging of apoptotic cells. J Labelled Cpd Radiopharm 43:739–751CrossRefGoogle Scholar
  17. 17.
    Lahorte C, Slegers G, Philippé J, Van de Wiele C, Dierckx RA (2001) Synthesis and in vitro evaluation of 123I-labelled human recombinant annexin V. Biomol Eng 17:51–53CrossRefPubMedGoogle Scholar
  18. 18.
    Rao LV, Tait JF, Hoang AD (1992) Binding of annexin V to a human ovarian carcinoma cell line (OC-2008). Contrasting effects on cell surface factor VIIa/tissue factor activity and prothrombinase activity. Thromb Res 67:517–531CrossRefPubMedGoogle Scholar
  19. 19.
    Lahorte CM, van de Wiele C, Bacher K, van den Bossche B, Thierens H, van Belle S, Slegers G, Dierckx RA (2003) Biodistribution and dosimetry study of 123I-rh-annexin V in mice and humans. Nucl Med Commun 24:871–880PubMedGoogle Scholar
  20. 20.
    Russell J, O’Donoghue JA, Finn R, Koziorowski J, Ruan S, Humm JL, Ling CC (2002) Iodination of annexin V for imaging apoptosis. J Nucl Med 43:671–677PubMedGoogle Scholar
  21. 21.
    Eisenhut M (2006) Molecular position of radiolabels and its impact on functional integrity of proteins. J Nucl Med 47:1400–1402PubMedGoogle Scholar
  22. 22.
    Stratton JR, Dewhurst TA, Kasina S, Reno JM, Cerqueira MD, Baskin DG, Tait JF (1995) Selective uptake of radiolabeled annexin V on acute porcine left atrial thrombi. Circulation 92:3113–3121CrossRefPubMedGoogle Scholar
  23. 23.
    Tait JF, Cerqueira MD, Dewhurst TA, Fujikawa K, Ritchie JL, Stratton JR (1994) Evaluation of annexin V as a platelet-directed thrombus targeting agent. Thromb Res 75:491–501CrossRefPubMedGoogle Scholar
  24. 24.
    Kown MH, Strauss HW, Blankenberg FG, Berry GJ, Stafford-Cecil S, Tait JF, Goris ML, Robbins RC (2001) In vivo imaging of acute cardiac rejection in human patients using (99 m)technetium labeled annexin V. Am J Transplant 1:270–277CrossRefPubMedGoogle Scholar
  25. 25.
    Narula J, Acio ER, Narula N, Samuels LE, Fyfe B, Wood D, Fitzpatrick JM, Raghunath PN, Tomaszewski JE, Kelly C, Steinmetz N, Green A, Tait JF, Leppo J, Blankenberg FG, Jain D, Strauss HW (2001) Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 7:1347–1352CrossRefPubMedGoogle Scholar
  26. 26.
    Belhocine T, Steinmetz N, Hustinx R, Bartsch P, Jerusalem G, Seidel L, Rigo P, Green A (2002) Increased uptake of the apoptosis-imaging agent (99 m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8:2766–2774PubMedGoogle Scholar
  27. 27.
    Kemerink GJ, Boersma HH, Thimister PW, Hofstra L, Liem IH, Pakbiers MT, Janssen D, Reutelingsperger CP, Heidendal GA (2001) Biodistribution and dosimetry of 99mTc-BTAP-annexin-V in humans. Eur J Nucl Med 28:1373–1378CrossRefPubMedGoogle Scholar
  28. 28.
    Boersma HH, Liem IH, Kemerink GJ, Thimister PW, Hofstra L, Stolk LM, van Heerde WL, Pakbiers MT, Janssen D, Beysens AJ, Reutelingsperger CP, Heidendal GA (2003) Comparison between human pharmacokinetics and imaging properties of two conjugation methods for 99mTc-annexin A5. Br J Radiol 76:553–560CrossRefPubMedGoogle Scholar
  29. 29.
    Blankenberg FG, Katsikis PD, Tait JF, Davis RE, Naumovski L, Ohtsuki K, Kopiwoda S, Abrams MJ, Darkes M, Robbins RC, Maecker HT, Strauss HW (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 95:6349–6354CrossRefPubMedGoogle Scholar
  30. 30.
    Blankenberg FG, Katsikis PD, Tait JF, Davis RE, Naumovski L, Ohtsuki K, Kopiwoda S, Abrams MJ, Strauss HW (1999) Imaging of apoptosis (programmed cell death) with 99mTc annexin V. J Nucl Med 40:184–191PubMedGoogle Scholar
  31. 31.
    Vriens PW, Blankenberg FG, Stoot JH, Ohtsuki K, Berry GJ, Tait JF, Strauss HW, Robbins RC (1998) The use of technetium Tc 99 m annexin V for in vivo imaging of apoptosis during cardiac allograft rejection. J Thorac Cardiovasc Surg 116:844–853CrossRefPubMedGoogle Scholar
  32. 32.
    Ohtsuki K, Akashi K, Aoka Y, Blankenberg FG, Kopiwoda S, Tait JF, Strauss HW (1999) Technetium-99m HYNIC-annexin V: a potential radiopharmaceutical for the in-vivo detection of apoptosis. Eur J Nucl Med 26:1251–1258CrossRefPubMedGoogle Scholar
  33. 33.
    Blankenberg FG, Robbins RC, Stoot JH, Vriens PW, Berry GJ, Tait JF, Strauss HW (2000) Radionuclide imaging of acute lung transplant rejection with annexin V. Chest 117:834–840CrossRefPubMedGoogle Scholar
  34. 34.
    Ogura Y, Krams SM, Martinez OM, Kopiwoda S, Higgins JP, Esquivel CO, Strauss HW, Tait JF, Blankenberg FG (2000) Radiolabeled annexin V imaging: diagnosis of allograft rejection in an experimental rodent model of liver transplantation. Radiology 214:795–800CrossRefPubMedGoogle Scholar
  35. 35.
    Blankenberg FG, Tait JF, Blankenberg TA, Post AM, Strauss HW (2001) Imaging macrophages and the apoptosis of granulocytes in a rodent model of subacute and chronic abscesses with radiolabeled monocyte chemotactic peptide-1 and annexin V. Eur J Nucl Med 28:1384–1393CrossRefPubMedGoogle Scholar
  36. 36.
    Blankenberg FG, Naumovski L, Tait JF, Post AM, Strauss HW (2001) Imaging cyclophosphamide-induced intramedullary apoptosis in rats using 99mTc-radiolabeled annexin V. J Nucl Med 42:309–316PubMedGoogle Scholar
  37. 37.
    Tokita N, Hasegawa S, Maruyama K, Izumi T, Blankenberg FG, Tait JF, Strauss HW, Nishimura T (2003) 99mTc-Hynic-annexin V imaging to evaluate inflammation and apoptosis in rats with autoimmune myocarditis. Eur J Nucl Med Mol Imaging 30:232–238CrossRefPubMedGoogle Scholar
  38. 38.
    Post AM, Katsikis PD, Tait JF, Geaghan SM, Strauss HW, Blankenberg FG (2002) Imaging cell death with radiolabeled annexin V in an experimental model of rheumatoid arthritis. J Nucl Med 43:1359–1365PubMedGoogle Scholar
  39. 39.
    Taki J, Higuchi T, Kawashima A, Tait JF, Kinuya S, Muramori A, Matsunari I, Nakajima K, Tonami N, Strauss HW (2004) Detection of cardiomyocyte death in a rat model of ischemia and reperfusion using 99mTc-labeled annexin V. J Nucl Med 45:1536–1541PubMedGoogle Scholar
  40. 40.
    Peker C, Sarda-Mantel L, Loiseau P, Rouzet F, Nazneen L, Martet G, Vrigneaud JM, Meulemans A, Saumon G, Michel JB, Le Guludec D (2004) Imaging apoptosis with (99 m)Tc-annexin-V in experimental subacute myocarditis. J Nucl Med 45:1081–1086PubMedGoogle Scholar
  41. 41.
    Tang XN, Wang Q, Koike MA, Cheng D, Goris ML, Blankenberg FG, Yenari MA (2007) Monitoring the protective effects of minocycline treatment with radiolabeled annexin V in an experimental model of focal cerebral ischemia. J Nucl Med 48:1822–1828CrossRefPubMedGoogle Scholar
  42. 42.
    Mochizuki T, Kuge Y, Zhao S, Tsukamoto E, Hosokawa M, Strauss HW, Blankenberg FG, Tait JF, Tamaki N (2003) Detection of apoptotic tumor response in vivo after a single dose of chemotherapy with 99mTc-annexin V. J Nucl Med 44:92–97PubMedGoogle Scholar
  43. 43.
    Wong E, Kumar V, Howman-Giles RB, Vanderheyden JL (2008) Imaging of therapy-induced apoptosis using (99 m)Tc-HYNIC-annexin V in thymoma tumor-bearing mice. Cancer Biother Radiopharm 23:715–726CrossRefPubMedGoogle Scholar
  44. 44.
    Lan XL, Zhang YX, He Y, Sun X, An R, Gao ZR, Cao GX (2008) Feasibility of apoptosis-imaging agent 99mTc-HYNIC-annexin V in early assessment of chemotherapeutic effect on tumor models. Zhonghua Zhong Liu Za Zhi 30:737–740PubMedGoogle Scholar
  45. 45.
    Guo MF, Zhao Y, Tian R, Li L, Guo L, Xu F, Liu YM, He YB, Bai S, Wang J (2009) In vivo 99mTc-HYNIC-annexin V imaging of early tumor apoptosis in mice after single dose irradiation. J Exp Clin Cancer Res. 28:136CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Erba PA, Manfredi C, Lazzeri E, Minichilli F, Pauwels EK, Sbrana A, Strauss HW, Mariani G (2010) Time course of Paclitaxel-induced apoptosis in an experimental model of virus-induced breast cancer. J Nucl Med 51:775–781CrossRefPubMedGoogle Scholar
  47. 47.
    Kemerink GJ, Liu X, Kieffer D, Ceyssens S, Mortelmans L, Verbruggen AM, Steinmetz ND, Vanderheyden JL, Green AM, Verbeke K (2003) Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med 44:947–952PubMedGoogle Scholar
  48. 48.
    Thimister PW, Hofstra L, Liem IH, Boersma HH, Kemerink G, Reutelingsperger CP, Heidendal GA (2003) In vivo detection of cell death in the area at risk in acute myocardial infarction. J Nucl Med 44:391–396PubMedGoogle Scholar
  49. 49.
    Kiestelaer BLJH, Reutelingsperger CPM, Heidendal GAK, Daemen MJAP, Mess WH, Hofstra L (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350:1472–1473Google Scholar
  50. 50.
    Blankenberg FG, Kalinyak J, Liu L, Koike M, Cheng D, Goris ML, Green A, Vanderheyden JL, Tong DC, Yenari MA (2006) 99mTc-HYNIC-annexin V SPECT imaging of acute stroke and its response to neuroprotective therapy with antiFas ligand antibody. Eur J Nucl Med Mol Imaging 33:566–574CrossRefPubMedGoogle Scholar
  51. 51.
    Lorberboym M, Blankenberg FG, Sadeh M, Lampl Y (2006) In vivo imaging of apoptosis in patients with acute stroke: correlation with blood-brain barrier permeability. Brain Res 1103:13–19CrossRefPubMedGoogle Scholar
  52. 52.
    Lampl Y, Lorberboym M, Blankenberg FG, Sadeh M, Gilad R (2006) Annexin V SPECT imaging of phosphatidylserine expression in patients with dementia. Neurology 66:1253–1254CrossRefPubMedGoogle Scholar
  53. 53.
    van de Wiele C, Lahorte C, Vermeersch H, Loose D, Mervillie K, Steinmetz ND, Vanderheyden JL, Cuvelier CA, Slegers G, Dierck RA (2003) Quantitative tumor apoptosis imaging using technetium-99m-HYNIC annexin V single photon emission computed tomography. J Clin Oncol 21:3483–3487CrossRefPubMedGoogle Scholar
  54. 54.
    Vermeersch H, Loose D, Lahorte C, Mervillie K, Dierckx R, Steinmetz N, Vanderheyden JL, Cuvelier C, Slegers G, Van de Wiele C (2004) 99mTc-HYNIC Annexin-V imaging of primary head and neck carcinoma. Nucl Med Commun 25:259–263CrossRefPubMedGoogle Scholar
  55. 55.
    Rongen GA, Oyen WJ, Ramakers BP, Riksen NP, Boerman OC, Steinmetz N, Smits P (2005) Annexin A5 scintigraphy of forearm as a novel in vivo model of skeletal muscle preconditioning in humans. Circulation 111:173–178CrossRefPubMedGoogle Scholar
  56. 56.
    Riksen NP, Oyen WJ, Ramakers BP, Van den Broek PH, Engbersen R, Boerman OC, Smits P, Rongen GA (2005) Oral therapy with dipyridamole limits ischemia-reperfusion injury in humans. Clin Pharmacol Ther 78:52–59CrossRefPubMedGoogle Scholar
  57. 57.
    Riksen NP, Zhou Z, Oyen WJ, Jaspers R, Ramakers BP, Brouwer RM, Boerman OC, Steinmetz N, Smits P, Rongen GA (2006) Caffeine prevents protection in two human models of ischemic preconditioning. J Am Coll Cardiol 48:700–707CrossRefPubMedGoogle Scholar
  58. 58.
    Haas RL, de Jong D, Olmos RAV, Hoefnagel CA, van den Heuvel I, Zerp SF, Bartelink H (2004) Verheij, M. In vivo imaging of radiation induced apoptosis in follicular lymphoma patients. Int J Radiat Oncol Biol Phys 59:782–787CrossRefPubMedGoogle Scholar
  59. 59.
    Kartachova M, Haas RL, Olmos RA, Hoebers FJ, van Zandwijk N, Verheij M (2004) In vivo imaging of apoptosis by 99mTc-Annexin V scintigraphy: visual analysis in relation to treatment response. Radiother Oncol 72:333–339CrossRefPubMedGoogle Scholar
  60. 60.
    Rottey S, Slegers G, Van Belle S, Goethals I, Van de Wiele C (2006) Sequential 99mTc-hydrazinonicotinamide-annexin V imaging for predicting response to chemotherapy. J Nucl Med 47:1813–1818PubMedGoogle Scholar
  61. 61.
    Rottey S, Loose D, Vakaet L, Lahorte C, Vermeersch H, Van Belle S, Van de Wiele C (2007) 99mTc-HYNIC Annexin-V imaging of tumors and its relationship to response to radiotherapy and/or chemotherapy. Q J Nucl Med Mol Imaging 51:182–188PubMedGoogle Scholar
  62. 62.
    Hoebers FJ, Kartachova M, de Bois J, van den Brekel MW, van Tinteren H, van Herk M, Rasch CR, Valdés Olmos RA, Verheij M (2008) 99mTc Hynic-rh-Annexin V scintigraphy for in vivo imaging of apoptosis in patients with head and neck cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 35:509–518CrossRefPubMedGoogle Scholar
  63. 63.
    Decristoforo C, Mather SJ (1999) Technetium-99m somatostatin analogues: effect of labelling methods and peptide sequence. Eur J Nucl Med 26:869–876CrossRefPubMedGoogle Scholar
  64. 64.
    Verbeke K, Kieffer D, Vanderheyden JL, Reutelingsperger C, Steinmetz N, Green A, Verbruggen A (2003) Optimization of the preparation of 99mTc-labeled Hynic-derivatized Annexin V for human use. Nucl Med Biol 30:771–778CrossRefPubMedGoogle Scholar
  65. 65.
    Vanderheyden JL, Liu G, He J, Patel B, Tait JF, Hnatowich DJ (2006) Evaluation of 99mTc-MAG3-annexin V: influence of the chelate on in vitro and in vivo properties in mice. Nucl Med Biol 33:135–144CrossRefPubMedGoogle Scholar
  66. 66.
    Yang DJ, Azhdarinia A, Wu P, Yu DF, Tansey W, Kalimi SK, Kim EE, Podoloff DA (2001) In vivo and in vitro measurement of apoptosis in breast cancer cells using 99mTc-EC-annexin V. Cancer Biother Radiopharm 16:73–83CrossRefPubMedGoogle Scholar
  67. 67.
    Blankenberg F (2002) To scan or not to scan, it is a question of timing: technetium-99m-annexin V radionuclide imaging assessment of treatment efficacy after one course of chemotherapy. Clin Cancer Res 8:2757–2758PubMedGoogle Scholar
  68. 68.
    Kurihara H, Yang DJ, Cristofanilli M, Erwin WD, Yu DF, Kohanim S, Mendez R, Kim EE (2008) Imaging and dosimetry of 99mTc EC annexin V: preliminary clinical study targeting apoptosis in breast tumors. Appl Radiat Isot 66:1175–1182CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tait JF, Brown DS, Gibson DF, Blankenberg FG, Strauss HW (2000) Development and characterization of annexin V mutants with endogenous chelation sites for (99 m)Tc. Bioconjug Chem 11:918–925CrossRefPubMedGoogle Scholar
  70. 70.
    Tait JF, Smith C, Levashova Z, Patel B, Blankenberg FG, Vanderheyden JL (2006) Improved detection of cell death in vivo with annexin V radiolabeled by site-specific methods. J Nucl Med 47:1546–1553PubMedGoogle Scholar
  71. 71.
    Tait JF, Smith C, Blankenberg FG (2005) Structural requirements for in vivo detection of cell death with 99mTc-annexin V. J Nucl Med 46:807–815PubMedPubMedCentralGoogle Scholar
  72. 72.
    Luo QY, Wang F, Zhang ZY, Zhang Y, Lu HK, Sun SH, Zhu RS (2008) Preparation and bioevaluation of (99 m)Tc-HYNIC-annexin B1 as a novel radioligand for apoptosis imaging. Apoptosis 13:600–608CrossRefPubMedGoogle Scholar
  73. 73.
    Fonge H, de Saint Hubert M, Vunckx K, Rattat D, Nuyts J, Bormans G, Ni Y, Reutelingsperger C, Verbruggen A (2008) Preliminary in vivo evaluation of a novel 99mTc-labeled HYNIC-cys-annexin A5 as an apoptosis imaging agent. Bioorg Med Chem Lett 18:3794–3798CrossRefPubMedGoogle Scholar
  74. 74.
    Greupink R, Sio CF, Ederveen A, Orsel J (2009) Evaluation of a 99mTc-labeled AnnexinA5 variant for non-invasive SPECT imaging of cell death in liver, spleen and prostate. Pharm Res 26:2647–2656CrossRefPubMedGoogle Scholar
  75. 75.
    Biechlin ML, Bonmartin A, Gilly FN, Fraysse M, du Moulinet d’Hardemare A (2008) Radiolabeling of annexin A5 with (99 m)Tc: comparison of HYNIC-Tc vs. iminothiolane-Tc-tricarbonyl conjugates. Nucl Med Biol 35:679–687CrossRefPubMedGoogle Scholar
  76. 76.
    Vangestel C, Peeters M, Oltenfreiter R, D’Asseler Y, Staelens S, Van Steenkiste M, Philippé J, Kusters D, Reutelingsperger C, Van Damme N, Van de Wiele C (2010) In vitro and in vivo evaluation of [99mTc]-labeled tricarbonyl His-annexin A5 as an imaging agent for the detection of phosphatidylserine-expressing cells. Nucl Med Biol 37:965–975CrossRefPubMedGoogle Scholar
  77. 77.
    De Saint-Hubert M, Mottaghy FM, Vunckx K, Nuyts J, Fonge H, Prinsen K, Stroobants S, Mortelmans L, Deckers N, Hofstra L, Reutelingsperger CP, Verbruggen A, Rattat D (2010) Site-specific labeling of ‘second generation’ annexin V with 99mTc(CO)3 for improved imaging of apoptosis in vivo. Bioorg Med Chem 18:1356–1363CrossRefPubMedGoogle Scholar
  78. 78.
    Wen X, Wu QP, Ke S, Wallace S, Charnsangavej C, Huang P, Liang D, Chow D, Li C (2003) Improved radiolabeling of PEGylated protein: PEGylated annexin V for noninvasive imaging of tumor apoptosis. Cancer Biother Radiopharm 18:819–827CrossRefPubMedGoogle Scholar
  79. 79.
    Glaser M, Collingridge DR, Aboagye EO, Bouchier-Hayes L, Hutchinson OC, Martin SJ, Price P, Brady F, Luthra SK (2003) Iodine-124 labelled annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Appl Radiat Isot 58:55–62CrossRefPubMedGoogle Scholar
  80. 80.
    Collingridge DR, Glaser M, Osman S, Barthel H, Hutchinson OC, Luthra SK, Brady F, Bouchier-Hayes L, Martin SJ, Workman P, Price P, Aboagye EO (2003) In vitro selectivity, in vivo biodistribution and tumour uptake of annexin V radiolabelled with a positron emitting radioisotope. Br J Cancer 89:1327–1333CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Dekker B, Keen H, Shaw D, Disley L, Hastings D, Hadfield J, Reader A, Allan D, Julyan P, Watson A, Zweit J (2005) Functional comparison of annexin V analogues labeled indirectly and directly with iodine-124. Nucl Med Biol 32:403–413CrossRefPubMedGoogle Scholar
  82. 82.
    Keen HG, Dekker BA, Disley L, Hastings D, Lyons S, Reader AJ, Ottewell P, Watson A, Zweit J (2005) Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 32:395–402CrossRefPubMedGoogle Scholar
  83. 83.
    Dekker B, Keen H, Lyons S, Disley L, Hastings D, Reader A, Ottewell P, Watson A, Zweit (2005) J. MBP-annexin V radiolabeled directly with iodine-124 can be used to image apoptosis in vivo using PET. Nucl Med Biol 32:241–252CrossRefPubMedGoogle Scholar
  84. 84.
    Zijlstra S, Gunawan J, Burchert W (2003) Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl Radiat Isot 58:201–207CrossRefPubMedGoogle Scholar
  85. 85.
    Toretsky J, Levenson A, Weinberg IN, Tait JF, Uren A, Mease RC (2004) Preparation of F-18 labeled annexin V: a potential PET radiopharmaceutical for imaging cell death. Nucl Med Biol 31:747–752CrossRefPubMedGoogle Scholar
  86. 86.
    Grierson JR, Yagle KJ, Eary JF, Tait JF, Gibson DF, Lewellen B, Link JM, Krohn KA (2004) Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjug Chem 15:373–379CrossRefPubMedGoogle Scholar
  87. 87.
    Murakami Y, Takamatsu H, Taki J, Tatsumi M, Noda A, Ichise R, Tait JF, Nishimura S (2004) 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imaging 31:469–474CrossRefPubMedGoogle Scholar
  88. 88.
    Yagle KJ, Eary JF, Tait JF, Grierson JR, Link JM, Lewellen B, Gibson DF, Krohn KA (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46:658–666PubMedGoogle Scholar
  89. 89.
    Hu S, Kiesewetter DO, Zhu L, Guo N, Gao H, Liu G, Hida N, Lang L, Niu G, Chen X (2012) Longitudinal PET imaging of doxorubicin-induced cell death with 18F-Annexin V. Mol Imaging Biol 14:762–770CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Perreault A, Knight JC, Wang M, Way J, Wuest F (2016) 18F-Labeled wild-type annexin V: comparison of random and site-selective radiolabeling methods. Amino Acids 48:65–74CrossRefPubMedGoogle Scholar
  91. 91.
    Li X, Link JM, Stekhova S, Yagle KJ, Smith C, Krohn KA, Tait JF (2008) Site-specific labeling of annexin V with F-18 for apoptosis imaging. Bioconjug Chem 19:1684–1688CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Wuest F, Berndt M, Bergmann R, van den Hoff J, Pietzsch J (2008) Synthesis and application of [18F]FDG-maleimidehexyloxime ([18F]FDG-MHO): a [18F]FDG-based prosthetic group for the chemoselective 18F-labeling of peptides and proteins. Bioconjug Chem 19:1202–1210CrossRefPubMedGoogle Scholar
  93. 93.
    Wang MW, Wang F, Zheng YJ, Zhang YJ, Zhang YP, Zhao Q, Shen CK, Wang Y, Sun SH (2013) An in vivo molecular imaging probe (18)F-Annexin B1 for apoptosis detection by PET/CT: preparation and preliminary evaluation. Apoptosis 18:238–247CrossRefPubMedGoogle Scholar
  94. 94.
    Cauchon N, Langlois R, Rousseau JA, Tessier G, Cadorette J, Lecomte R, Hunting DJ, Pavan RA, Zeisler SK, van Lier JE (2007) PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging 34:247–258CrossRefPubMedGoogle Scholar
  95. 95.
    Bauwens M, De Saint-Hubert M, Devos E, Deckers N, Reutelingsperger C, Mortelmans L, Himmelreich U, Mottaghy FM, Verbruggen A (2011) Site-specific 68 Ga-labeled Annexin A5 as a PET imaging agent for apoptosis. Nucl Med Biol 38:381–392CrossRefPubMedGoogle Scholar
  96. 96.
    Davletov BA, Sudhof TC (1993) A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/ phospholipid binding. J Biol Chem 268:26386–26390PubMedGoogle Scholar
  97. 97.
    Zhao M, Zhu X, Ji S, Zhou J, Ozker KS, Fang W, Molthen RC, Hellman RS (2006) 99mTc-labeled C2A domain of synaptotagmin I as a target-specific molecular probe for noninvasive imaging of acute myocardial infarction. J Nucl Med 47:1367–1374PubMedGoogle Scholar
  98. 98.
    Alam IS, Neves AA, Witney TH, Boren J, Brindle KM (2010) Comparison of the C2A domain of synaptotagmin-I and annexin-V as probes for detecting cell death. Bioconjug Chem 21:884–891CrossRefPubMedGoogle Scholar
  99. 99.
    Tavaré R, De Rosales TM, Blower PJ, Mullen GE (2009) Efficient site-specific radiolabeling of a modified C2A domain of synaptotagmin I with [99mTc(CO)3]+: a new radiopharmaceutical for imaging cell death. Bioconjug Chem 20:2071–2081CrossRefPubMedGoogle Scholar
  100. 100.
    Hueting R, Tavaré R, Dilworth JR, Mullen GE (2013) Copper-64 radiolabelling of the C2A domain of synaptotagmin I using a functionalised bis(thiosemicarbazone): a pre- and post-labelling comparison. J Inorg Biochem 128:108–111CrossRefPubMedGoogle Scholar
  101. 101.
    Wang F, Fang W, Zhang MR, Zhao M, Liu B, Wang Z, Hua Z, Yang M, Kumata K, Hatori A, Yamasaki T, Yanamoto K, Suzuki K (2011) Evaluation of chemotherapy response in VX2 rabbit lung cancer with 18F-labeled C2A domain of synaptotagmin I. J Nucl Med 52:592–599CrossRefPubMedGoogle Scholar
  102. 102.
    Neves AA, Xie B, Fawcett S, Alam IS, Witney TH, de Backer MM, Summers J, Hughes W, McGuire S, Soloviev D, Miller J, Howat WJ, Hu DE, Rodrigues TB, Lewis DY, Brindle KM (2017) Rapid imaging of tumor cell death in vivo using the C2A domain of synaptotagmin-I. J Nucl Med 58:881–887CrossRefPubMedGoogle Scholar
  103. 103.
    Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–1738CrossRefPubMedGoogle Scholar
  104. 104.
    Burtea C, Laurent S, Lancelot E, Ballet S, Murariu O, Rousseaux O, Port M, Elst LV, Corot C, Mueller RN (2009) Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques. Mol Pharm 6:1903–1919CrossRefPubMedGoogle Scholar
  105. 105.
    Desai TJ, Toombs JE, Minna JD, Brekken RA, Udugamasooriya DG (2016) Identification of lipid-phosphatidylserine (PS) as the target of unbiasedly selected cancer specific peptide-peptoid hybrid PPS1. Oncotarget 7:30678–30690CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Shao R, Xiong C, Wen X, Gelovani JG, Li C (2007) Targeting phosphatidylserine on apoptotic cells with phages and peptides selected from a bacteriophage display library. Mol Imaging 6:417–426CrossRefPubMedGoogle Scholar
  107. 107.
    Richter S, Wuest F (2014) 18F-Labeled peptides: the future is bright. Molecules 19:20536–20556CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Kapty J, Kniess T, Wuest F, Mercer JR (2011) Radiolabeling of phosphatidylserine-binding peptides with prosthetic groups N-[6-(4-[18F] fluorobenzylidene)-aminooxyhexyl]maleimide ([18F]FBAM) and N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Appl Radiat Isot 69:1218–1225CrossRefPubMedGoogle Scholar
  109. 109.
    Wuest M, Perreault A, Kapty J, Richter S, Foerster C, Bergman C, Way J, Mercer J, Wuest F (2015) Radiopharmacological evaluation of (18)F-labeled phosphatidylserine-binding peptides for molecular imaging of apoptosis. Nucl Med Biol 42:864–874CrossRefPubMedGoogle Scholar
  110. 110.
    Kapty J, Banman S, Goping IS, Mercer JR (2012) Evaluation of phosphatidylserine-binding peptides targeting apoptotic cells. J Biomol Screen 17:1293–1301CrossRefPubMedGoogle Scholar
  111. 111.
    Khoshbakht S, Beiki D, Geramifar B, Kobarfard F, Sabzevari O, Amini M, Shahhosseini S (2016) 18FDG-labeled LIKKPF: a PET tracer for apoptosis imaging. J Radioanal Nucl Chem 310:413–421CrossRefGoogle Scholar
  112. 112.
    Ben Azzouna R, Guez A, Benali K, Al-Shoukr F, Gonzalez W, Karoyan P, Rouzet F, Le Guludec D (2017) Synthesis, gallium labelling and characterization of P04087, a functionalized phosphatidylserine-binding peptide. EJNMMI Radiopharm Chem 2:3CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Xiong C, Brewer K, Song S, Zhang R, Lu W, Wen X, Li C (2011) Peptide-based imaging agents targeting phosphatidylserine for the detection of apoptosis. J Med Chem 54:1825–1835CrossRefPubMedGoogle Scholar
  114. 114.
    Igarashi K, Kaneda M, Yamaji A, Saido TC, Kikkawa U, Ono Y, Inoue K, Umeda M (1995) A novel phosphatidylserine-binding peptide motif defined by an anti-idiotypic monoclonal antibody. Localization of phosphatidylserine-specific binding sites on protein kinase C and phosphatidylserine decarboxylase. J Biol Chem 270:29075–29078CrossRefPubMedGoogle Scholar
  115. 115.
    Song S, Xiong C, Lu W, Ku G, Huang G, Li C (2013) Apoptosis imaging probe predicts early chemotherapy response in preclinical models: a comparative study with 18F-FDG PET. J Nucl Med 54:104–110CrossRefPubMedGoogle Scholar
  116. 116.
    Perreault A, Richter S, Bergman C, Wuest M, Wuest F (2016) Targeting phosphatidylserine with a 64Cu-labeled peptide for molecular imaging of apoptosis. Mol Pharm 13:3564–3577CrossRefPubMedGoogle Scholar
  117. 117.
    Nock BA, Maina T, Krenning EP, de Jong M (2014) To serve and protect’: enzyme inhibitors as radiopeptide escorts promote tumor targeting. J Nucl Med 55:121–127CrossRefPubMedGoogle Scholar
  118. 118.
    Langer M, Beck-Sickinger AG (2001) Peptides as carrier for tumor diagnosis and treatment. Curr Med Chem Anticancer Agents 1:71–93CrossRefPubMedGoogle Scholar
  119. 119.
    Thapa N, Kim S, So IS, Lee BH, Kwon IC, Choi K, Kim IS (2008) Discovery of a phosphatidylserine-recognizing peptide and its utility in molecular imaging of tumour apoptosis. J Cell Mol Med 12:1649–1660CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Kim S, Bae SM, Seo J, Cha K, Piao M, Kim SJ, Son HN, Park RW, Lee BH, Kim IS (2015) Advantages of the phosphatidylserine-recognizing peptide PSP1 for molecular imaging of tumor apoptosis compared with annexin V. PLoS ONE 10:e0121171CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Shukla SP, Udugamasooriya DG (2017) A mini-library system to investigate non-essential residues of lipid-phosphatidylserine (PS) binding peptide-peptoid hybrid PPS1. Medchemcomm 8:2208–2215CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Singh J, Shukla SP, Desai TJ, Udugamasooriya DG (2016) Identification of the minimum pharmacophore of lipid-phosphatidylserine (PS) binding peptide-peptoid hybrid PPS1D1. Bioorg Med Chem 24:4470–4477CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Shukla SP, Manarang JC, Udugamasooriya DG (2017) A unique mid-sequence linker used to multimerize the lipid-phosphatidylserine (PS) binding peptide-peptoid hybrid PPS1. Eur J Med Chem 137:1–10CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Zheng H, Wang F, Wang Q, Gao J (2011) Cofactor-free detection of phosphatidylserine with cyclic peptides mimicking lactadherin. J Am Chem Soc 133:15280–15283CrossRefPubMedGoogle Scholar
  125. 125.
    Hosseini AS, Zheng H, Gao J (2014) Understanding lipid recognition by protein-mimicking cyclic peptides. Tetrahedron 70:7632–7638CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Stafford JH, Hao G, Best AM, Sun X, Thorpe PE (2013) Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine. PLoS ONE 8:e84864CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Zhang L, Zhou H, Belzile O, Thorpe P, Zhao D (2014) Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. J Control Release 183:114–123CrossRefPubMedGoogle Scholar
  128. 128.
    Koulov AV, Stucker KA, Lakshmi C, Robinson JP, Smith BD (2003) Detection of apoptotic cells using a synthetic fluorescent sensor for membrane surfaces that contain phosphatidylserine. Cell Death Differ 10:1357–1359CrossRefPubMedGoogle Scholar
  129. 129.
    Ngo HT, Liu X, Jolliffe KA (2012) Anion recognition and sensing with Zn(II)-dipicolylamine complexes. Chem Soc Rev 41:4928–4965CrossRefPubMedGoogle Scholar
  130. 130.
    Plaunt AJ, Harmatys KM, Wolter WR, Suckow MA, Smith BD (2014) Library synthesis, screening, and discovery of modified Zinc(II)-Bis(dipicolylamine) probe for enhanced molecular imaging of cell death. Bioconjug Chem 25:724–737CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Oltmanns D, Zitzmann-Kolbe S, Mueller A, Bauder-Wuest U, Schaefer M, Eder M, Haberkorn U, Eisenhut M. Zn (2011) (II)-bis(cyclen) complexes and the imaging of apoptosis/necrosis. Bioconjug Chem 22:2611–2624CrossRefPubMedGoogle Scholar
  132. 132.
    Wang H, Wu Z, Li S, Hu K, Tang G (2017) Synthesis and evaluation of a radiolabeled bis-zinc(II)-cyclen complex as a potential probe for in vivo imaging of cell death. Apoptosis 22:585–595CrossRefPubMedGoogle Scholar
  133. 133.
    Wyffels L, Gray BD, Barber C, Moore SK, Woolfenden JM, Pak KY, Liu Z (2011) Synthesis and preliminary evaluation of radiolabeled bis(zinc(II)-dipicolylamine) coordination complexes as cell death imaging agents. Bioorg Med Chem 19:3425–3433CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Sun T, Tang G, Tian H, Hu K, Yao S, Su Y, Wang C (2015) Positron emission tomography imaging of cardiomyocyte apoptosis with a novel molecule probe [18F]FP-DPAZn2. Oncotarget 6:30579–30591PubMedPubMedCentralGoogle Scholar
  135. 135.
    Wang H, Tang X, Tang G, Huang T, Liang X, Hu K, Deng H, Yi C, Shi X, Wu K (2013) Noninvasive positron emission tomography imaging of cell death using a novel small-molecule probe, (18)F labeled bis(zinc(II)-dipicolylamine) complex. Apoptosis 18:1017–10927CrossRefPubMedGoogle Scholar
  136. 136.
    Wen F, Nie D, Hu K, Tang G, Yao S, Tang C (2017) Semi-automatic synthesis and biodistribution of N-(2-(18)F-fluoropropionyl)-bis(zinc (II)-dipicolylamine) ((18)F-FP-DPAZn2) for AD model imaging. BMC Med Imaging 17:27CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Wang X, Feng H, Zhao S, Xu J, Wu X, Cui J, Zhang Y, Qin Y, Liu Z, Gao T, Gao Y, Zeng W (2017) SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic. Oncotarget 8:20476–20495PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Melinda Wuest
    • 1
  • Amanda Perreault
    • 1
  • Susan Richter
    • 1
  • James C. Knight
    • 2
  • Frank Wuest
    • 1
    Email author
  1. 1.Department of Oncology, Cross Cancer InstituteUniversity of AlbertaEdmontonCanada
  2. 2.School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations