, Volume 24, Issue 1–2, pp 95–107 | Cite as

Klotho modulates ER-mediated signaling crosstalk between prosurvival autophagy and apoptotic cell death during LPS challenge

  • Jennifer MytychEmail author
  • Przemyslaw Solek
  • Marek Koziorowski


Bacterial endotoxins have been shown to induce prosurvival autophagy or apoptosis in fibroblasts and thus impair the wound healing process. Endoplasmic reticulum has been proposed as a molecular switch between these processes and klotho protein possessing pleiotropic characteristics seems to be involved in both processes, however the exact molecular mechanism is unknown. In this study, we have evaluated the effect of klotho silencing on human fibroblasts exposed to a non-toxic dose of lipopolysaccharide in terms of in vitro wound healing ability. We show for the first time, that klotho silencing in fibroblasts intensified lipopolysaccharide-induced oxidative stress and inflammatory response, what resulted in genomic instability, p-eIF2a-mediated ER stress, retardation of prosurvival autophagy, induction of apoptotic cell death and finally in impaired wound closure. Therefore, our data suggest that klotho serves as a part of cellular defense mechanism engaged in providing protection against bacterial infections during wound healing by modulating ER-signaling crosstalk between autophagy and apoptosis.


Klotho Fibroblasts ER stress Autophagy LPS 



The authors would like to thank Slawomir Nowak, MSc for providing antibodies against HMOX-1 and HMOX-2.

Author contributions

JM: performed the experiments, analyzed the data, carried out data interpretation, wrote the paper, conceived and designed the experiments; PS: performed the experiments, analyzed the data, carried out data interpretation; MK: conceived and designed the experiments; carried out data interpretation.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Supplementary material

10495_2018_1496_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 KB)


  1. 1.
    Gonzalez AC, Costa TF, Andrade ZA, Medrado AR (2016) Wound healing—a literature review. An Bras Dermatol 91:614–620CrossRefGoogle Scholar
  2. 2.
    Ataide JA, Cefali LC, Croisfelt FM, Shimojo AAM, Oliveira-Nascimento L, Mazzola PG (2018) Natural actives for wound healing: a review. Phytother Res. Google Scholar
  3. 3.
    Yang H, Hu C, Li F, Liang L, Liu L (2013) Effect of lipopolysaccharide on the biological characteristics of human skin fibroblasts and hypertrophic scar tissue formation. IUBMB Life 65:526–532CrossRefGoogle Scholar
  4. 4.
    Brothers KM, Stella NA, Hunt KM, Romanowski EG, Liu X, Klarlund JK, Shanks RM (2015) Putting on the brakes: bacterial impediment of wound healing. Sci Rep 5:14003CrossRefGoogle Scholar
  5. 5.
    Eslani M, Movahedan A, Afsharkhamseh N, Sroussi H, Djalilian AR (2014) The role of toll-like receptor 4 in corneal epithelial wound healing. Invest Ophthalmol Vis Sci 55:6108–6115CrossRefGoogle Scholar
  6. 6.
    He Z, Gao Y, Deng Y, Li W, Chen Y, Xing S, Zhao X, Ding J, Wang X (2012) Lipopolysaccharide induces lung fibroblast proliferation through Toll-like receptor 4 signaling and the phosphoinositide3-kinase-Akt pathway. PLoS ONE 7:e35926CrossRefGoogle Scholar
  7. 7.
    Cheng R, Choudhury D, Liu C, Billet S, Hu T, Bhowmick NA (2015) Gingival fibroblasts resist apoptosis in response to oxidative stress in a model of periodontal diseases. Cell Death Discov 1:15046CrossRefGoogle Scholar
  8. 8.
    Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335CrossRefGoogle Scholar
  9. 9.
    de Bentzmann S, Polette M, Zahm JM, Hinnrasky J, Kileztky C, Bajolet O, Klossek JM, Filloux A, Lazdunski A, Puchelle E (2000) Pseudomonas aeruginosa virulence factors delay airway epithelial wound repair by altering the actin cytoskeleton and inducing overactivation of epithelial matrix metalloproteinase-2. Lab Invest 80:209–219CrossRefGoogle Scholar
  10. 10.
    Zhu Z, Dai J, Liao Y, Wang T (2017) Sox9 protects against human lung fibroblast cell apoptosis induced by LPS through activation of the AKT/GSK3beta pathway. Biochemistry 82:606–612Google Scholar
  11. 11.
    Rovetta F, Stacchiotti A, Consiglio A, Cadei M, Grigolato PG, Lavazza A, Rezzani R, Aleo MF (2012) ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin. Exp Cell Res 318:238–250CrossRefGoogle Scholar
  12. 12.
    Yamashita K, Yotsuyanagi T, Yamauchi M, Young DM (2014) Klotho mice: a novel wound model of aged skin. Plast Reconstr Surg Glob Open 2:e101CrossRefGoogle Scholar
  13. 13.
    Chen K, Zhou X, Sun Z (2015) Haplodeficiency of Klotho gene causes arterial stiffening via upregulation of scleraxis expression and induction of autophagy. Hypertension 66:1006–1013CrossRefGoogle Scholar
  14. 14.
    Banerjee S, Zhao Y, Sarkar PS, Rosenblatt KP, Tilton RG, Choudhary S (2013) Klotho ameliorates chemically induced endoplasmic reticulum (ER) stress signaling. Cell Physiol Biochem 31:659–672CrossRefGoogle Scholar
  15. 15.
    Mytych J, Wos I, Solek P, Koziorowski M (2017) Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res 350:358–367CrossRefGoogle Scholar
  16. 16.
    Mytych J, Romerowicz-Misielak M, Koziorowski M (2018) Klotho protects human monocytes from LPS-induced immune impairment associated with immunosenescent-like phenotype. Mol Cell Endocrinol 470:1–13CrossRefGoogle Scholar
  17. 17.
    Yamauchi M, Hirohashi Y, Torigoe T, Matsumoto Y, Yamashita K, Kayama M, Sato N, Yotsuyanagi T (2016) Wound healing delays in alpha-Klotho-deficient mice that have skin appearance similar to that in aged humans—study of delayed wound healing mechanism. Biochem Biophys Res Commun 473:845–852CrossRefGoogle Scholar
  18. 18.
    Liu QF, Ye JM, Deng ZY, Yu LX, Sun Q, Li SS (2015) Ameliorating effect of Klotho on endoplasmic reticulum stress and renal fibrosis induced by unilateral ureteral obstruction. Iran J Kidney Dis 9:291–297Google Scholar
  19. 19.
    Xie B, Zhou J, Shu G, Liu DC, Chen J, Yuan L (2013) Restoration of klotho gene expression induces apoptosis and autophagy in gastric cancer cells: tumor suppressive role of klotho in gastric cancer. Cancer Cell Int 13:18CrossRefGoogle Scholar
  20. 20.
    Mytych J, Lewinska A, Bielak-Zmijewska A, Grabowska W, Zebrowski J, Wnuk M (2014) Nanodiamond-mediated impairment of nucleolar activity is accompanied by oxidative stress and DNMT2 upregulation in human cervical carcinoma cells. Chem Biol Interact 220:51–63CrossRefGoogle Scholar
  21. 21.
    Martin M, Leffler J, Smolag KI, Mytych J, Bjork A, Chaves LD, Alexander JJ, Quigg RJ, Blom AM (2016) Factor H uptake regulates intracellular C3 activation during apoptosis and decreases the inflammatory potential of nucleosomes. Cell Death Differ 23:903–911CrossRefGoogle Scholar
  22. 22.
    Thome MP, Filippi-Chiela EC, Villodre ES, Migliavaca CB, Onzi GR, Felipe KB, Lenz G (2016) Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J Cell Sci 129:4622–4632CrossRefGoogle Scholar
  23. 23.
    Kostarnoy AV, Gancheva PG, Logunov DY, Verkhovskaya LV, Bobrov MA, Scheblyakov DV, Tukhvatulin AI, Filippova NE, Naroditsky BS, Gintsburg AL (2013) Topical bacterial lipopolysaccharide application affects inflammatory response and promotes wound healing. J Interferon Cytokine Res 33:514–522CrossRefGoogle Scholar
  24. 24.
    Ravikumar P, Ye J, Zhang J, Pinch SN, Hu MC, Kuro-o M, Hsia CC, Moe OW (2014) Alpha-Klotho protects against oxidative damage in pulmonary epithelia. Am J Physiol Lung Cell Mol Physiol 307:L566–L575CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Banerjee S, Dey N, LeJeune WS, Sarkar PS, Brobey R, Rosenblatt KP, Tilton RG, Choudhary S (2011) Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes 60:1907–1916CrossRefGoogle Scholar
  26. 26.
    Six I, Okazaki H, Gross P, Cagnard J, Boudot C, Maizel J, Drueke TB, Massy ZA (2014) Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One 9:e93423CrossRefGoogle Scholar
  27. 27.
    Kitano T, Yamada H, Kida M, Okada Y, Saika S, Yoshida M (2017) Impaired healing of a cutaneous wound in an inducible nitric oxide synthase-knockout mouse. Dermatol Res Pract 2017:2184040CrossRefGoogle Scholar
  28. 28.
    Lin Y, Sun Z (2012) Antiaging gene Klotho enhances glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 in MIN6 beta-cells. Endocrinology 153:3029–3039CrossRefGoogle Scholar
  29. 29.
    Miyazaki T, Takenaka T, Inoue T, Sato M, Eiki Y, Nodera M, Hanyu M, Ohno Y, Shibazaki S, Suzuki H (2009) Zinc deficiency may accelerate aging by inhibiting klotho mRNA expression. Trace Nut Res 26:74–78Google Scholar
  30. 30.
    Liu F, Wu S, Ren H, Gu J (2011) Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat Cell Biol 13:254–262CrossRefGoogle Scholar
  31. 31.
    Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AF, Lavandero S (2013) Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol 301:215–290CrossRefGoogle Scholar
  32. 32.
    Wang ZV, Deng Y, Gao N, Pedrozo Z, Li DL, Morales CR, Criollo A, Luo X, Tan W, Jiang N, Lehrman MA, Rothermel BA, Lee AH, Lavandero S, Mammen PP, Ferdous A, Gillette TG, Scherer PE, Hill JA (2014) Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156:1179–1192CrossRefGoogle Scholar
  33. 33.
    Schmitz ML, Shaban MS, Albert BV, Gokcen A, Kracht M (2018) The crosstalk of endoplasmic reticulum (ER) stress pathways with NF-kappaB: complex mechanisms relevant for cancer, inflammation and infection. Biomedicines 6:58CrossRefGoogle Scholar
  34. 34.
    Chen Y, Brandizzi F (2013) IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 23:547–555CrossRefGoogle Scholar
  35. 35.
    Delom F, Emadali A, Cocolakis E, Lebrun JJ, Nantel A, Chevet E (2007) Calnexin-dependent regulation of tunicamycin-induced apoptosis in breast carcinoma MCF-7 cells. Cell Death Differ 14:586–596CrossRefGoogle Scholar
  36. 36.
    Kalsbeek D, Golsteyn RM (2017) G2/M-phase checkpoint adaptation and micronuclei formation as mechanisms that contribute to genomic instability in human cells. Int J Mol Sci 18:2344CrossRefGoogle Scholar
  37. 37.
    Tudzarova S, Mulholland P, Dey A, Stoeber K, Okorokov AL (2016) G.H. Williams, p53 controls CDC7 levels to reinforce G1 cell cycle arrest upon genotoxic stress. Cell Cycle 15:2958–2972CrossRefGoogle Scholar
  38. 38.
    Han C, Jin L, Mei Y, Wu M (2013) Endoplasmic reticulum stress inhibits cell cycle progression via induction of p27 in melanoma cells. Cell Signal 25:144–149CrossRefGoogle Scholar
  39. 39.
    Terradas M, Martin M, Tusell L, Genesca A (2009) DNA lesions sequestered in micronuclei induce a local defective-damage response. DNA Repair 8:1225–1234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jennifer Mytych
    • 1
    • 2
    Email author
  • Przemyslaw Solek
    • 1
    • 2
  • Marek Koziorowski
    • 1
    • 2
  1. 1.Department of Animal Physiology and Reproduction, Faculty of BiotechnologyUniversity of RzeszowKolbuszowaPoland
  2. 2.Centre of Applied Biotechnology and Basic SciencesUniversity of RzeszowKolbuszowaPoland

Personalised recommendations