Advertisement

Apoptosis

, Volume 14, Issue 5, pp 741–752 | Cite as

Caspase-3 binds diverse P4 residues in peptides as revealed by crystallography and structural modeling

  • Bin Fang
  • Guoxing Fu
  • Johnson Agniswamy
  • Robert W. Harrison
  • Irene T. Weber
Original Paper

Abstract

Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9–2.6 Å. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.

Keywords

Enzyme catalysis Cysteine protease Protein recognition Apoptosis 

Abbreviations

Ac

Acetyl

Cho

Aldehyde

pNA

p-Nitroanilide

RMS

Root mean square

Notes

Acknowledgments

B.F. was supported by the Georgia State University Molecular Basis of Disease Fellowship. G.F. was supported in part by the Georgia State University Research Program Enhancement award. I.T.W. and R.W.H. are Georgia Cancer Coalition Distinguished Cancer Scholars. This research was supported in part by the Georgia Research Alliance and the Georgia Cancer Coalition. We thank the staff at the SER-CAT beamline at the Advanced Photon Source, Argonne National Laboratory, for assistance during X-ray data collection. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Supplementary material

10495_2009_333_MOESM1_ESM.pdf (333 kb)
(PDF 332 kb)

References

  1. 1.
    Martinon F, Holler N, Richard C, Tschopp J (2000) Activation of a pro-apoptotic amplification loop through inhibition of NF-kappaB-dependent survival signals by caspase-mediated inactivation of RIP. FEBS Lett 468:134–136. doi: 10.1016/S0014-5793(00)01212-6 CrossRefPubMedGoogle Scholar
  2. 2.
    Fischer U, Janicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10:76–100. doi: 10.1038/sj.cdd.4401160 CrossRefPubMedGoogle Scholar
  3. 3.
    Timmer JC, Salvesen GS (2007) Caspase substrates. Cell Death Differ 14:66–72. doi: 10.1038/sj.cdd.4402059 CrossRefPubMedGoogle Scholar
  4. 4.
    Hartmann A, Troadec JD, Hunot S et al (2001) Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 21:2247–2255CrossRefPubMedGoogle Scholar
  5. 5.
    Hermel E, Gafni J, Propp SS et al (2004) Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Differ 11:424–438. doi: 10.1038/sj.cdd.4401358 CrossRefPubMedGoogle Scholar
  6. 6.
    Tacconi S, Perri R, Balestrieri E et al (2004) Increased caspase activation in peripheral blood mononuclear cells of patients with Alzheimer’s disease. Exp Neurol 190:254–262. doi: 10.1016/j.expneurol.2004.07.009 CrossRefPubMedGoogle Scholar
  7. 7.
    Lakhani SA, Masud A, Kuida K et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851. doi: 10.1126/science.1115035 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Volkmann X, Cornberg M, Wedemeyer H et al (2006) Caspase activation is required for antiviral treatment response in chronic hepatitis C virus infection. Hepatology 43:1311–1316. doi: 10.1002/hep.21186 CrossRefPubMedGoogle Scholar
  9. 9.
    Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM (2000) ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 10:1359–1366. doi: 10.1016/S0960-9822(00)00781-8 CrossRefPubMedGoogle Scholar
  10. 10.
    O’Brien T, Lee D (2004) Prospects for caspase inhibitors. Mini Rev Med Chem 4:153–165. doi: 10.2174/1389557043487448 CrossRefPubMedGoogle Scholar
  11. 11.
    Callus BA, Vaux DL (2007) Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 14:73–78. doi: 10.1038/sj.cdd.4402034 CrossRefPubMedGoogle Scholar
  12. 12.
    Thornberry NA, Rano TA, Peterson EP et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911. doi: 10.1074/jbc.272.29.17907 CrossRefPubMedGoogle Scholar
  13. 13.
    Lavrik IN, Golks A, Krammer PH (2005) Caspases: pharmacological manipulation of cell death. J Clin Invest 115:2665–2672. doi: 10.1172/JCI26252 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lien S, Pastor R, Sutherlin D, Lowman HB (2004) A substrate-phage approach for investigating caspase specificity. Protein J 23:413–425. doi: 10.1023/B:JOPC.0000039555.92058.51 CrossRefPubMedGoogle Scholar
  15. 15.
    Yoshimori A, Sakai J, Sunaga S et al (2007) Structural and functional definition of the specificity of a novel caspase-3 inhibitor, Ac-DNLD-CHO. BMC Pharmacol 7:8. doi: 10.1186/1471-2210-7-8 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schweizer A, Briand C, Grutter MG (2003) Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. J Biol Chem 278:42441–42447. doi: 10.1074/jbc.M304895200 CrossRefPubMedGoogle Scholar
  17. 17.
    Fang B, Boross PI, Tozser J, Weber IT (2006) Structural and kinetic analysis of caspase-3 reveals role for s5 binding site in substrate recognition. J Mol Biol 360:654–666. doi: 10.1016/j.jmb.2006.05.041 CrossRefPubMedGoogle Scholar
  18. 18.
    Backes C, Kuentzer J, Lenhof HP, Comtesse N, Meese E (2005) GraBCas: a bioinformatics tool for score-based prediction of Caspase- and Granzyme B-cleavage sites in protein sequences. Nucleic Acids Res 33:W208–W213. doi: 10.1093/nar/gki433 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fu G, Chumanevich AA, Agniswamy J, Fang B, Harrison RW, Weber IT (2008) Structural basis for executioner caspase recognition of P5 position in substrates. Apoptosis 13:1291–1302. doi: 10.1007/s10495-008-0259-9 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Stennicke HR, Renatus M, Meldal M, Salvesen GS (2000) Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem J 350(Pt 2):563–568. doi: 10.1042/0264-6021:3500563 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Maibaum J, Rich DH (1988) Inhibition of porcine pepsin by two substrate analogues containing statine. The effect of histidine at the P2 subsite on the inhibition of aspartic proteinases. J Med Chem 31:625–629. doi: 10.1021/jm00398a022 CrossRefPubMedGoogle Scholar
  22. 22.
    Donepudi M, Mac Sweeney A, Briand C, Grutter MG (2003) Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 11:543–549. doi: 10.1016/S1097-2765(03)00059-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Otwinowski ZM, Minor W (1997) Processing of X-ray diffraction data in oscillation mode. Meth Enzymol 276:307–326. doi: 10.1016/S0076-6879(97)76066-X CrossRefPubMedGoogle Scholar
  24. 24.
    Navaza J (1994) AMoRe: an automated package for molecular replacemnet. Acta Crystallogr D Biol Crystallogr 50:157–163CrossRefGoogle Scholar
  25. 25.
    Brunger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921. doi: 10.1107/S0907444998003254 CrossRefPubMedGoogle Scholar
  26. 26.
    Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47(Pt 2):110–119. doi: 10.1107/S0108767390010224 CrossRefPubMedGoogle Scholar
  27. 27.
    Esnouf RM (1997) An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model 15(132–134):112–133Google Scholar
  28. 28.
    Esnouf RM (1999) Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D Biol Crystallogr 55(Pt 4):938–940. doi: 10.1107/S0907444998017363 CrossRefPubMedGoogle Scholar
  29. 29.
    Harrison RW (1993) Stiffness and energy conservation in the molecular dynamics: an improved integrator. J Comput Chem 14:1112–1122. doi: 10.1002/jcc.540140912 CrossRefGoogle Scholar
  30. 30.
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132. doi: 10.1107/S0907444904019158 CrossRefPubMedGoogle Scholar
  31. 31.
    Bagossi P, Tozser J, Weber IT, Harrison RW (1999) Modification of parameters of the charge equilibrium scheme to achieve better correlation with experimental dipole moments. J Mol Model 5:143–152. doi: 10.1007/s008940050114 CrossRefGoogle Scholar
  32. 32.
    Harrison RWA (1999) Self-assembling neural network for modeling polymers. J Math Chem 26:125–137. doi: 10.1023/A:1019181811090 CrossRefGoogle Scholar
  33. 33.
    Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374. doi: 10.1016/S0968-0004(00)89080-5 CrossRefPubMedGoogle Scholar
  34. 34.
    Talanian RV, Quinlan C, Trautz S et al (1997) Substrate specificities of caspase family proteases. J Biol Chem 272:9677–9682. doi: 10.1074/jbc.272.15.9677 CrossRefPubMedGoogle Scholar
  35. 35.
    Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613. doi: 10.1074/jbc.273.49.32608 CrossRefPubMedGoogle Scholar
  36. 36.
    Nicholson DW, Ali A, Thornberry NA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43. doi: 10.1038/376037a0 CrossRefPubMedGoogle Scholar
  37. 37.
    Qiu L, Chen QX, Wang Q, Huang H, Song KK (2005) Irreversibly inhibitory kinetics of 3, 5-dihydroxyphenyl decanoate on mushroom (Agaricus bisporus) tyrosinase. Bioorg Med Chem 13:6206–6211. doi: 10.1016/j.bmc.2005.06.034 CrossRefPubMedGoogle Scholar
  38. 38.
    Ganesan R, Mittl PR, Jelakovic S, Grutter MG (2006) Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis. J Mol Biol 359:1378–1388. doi: 10.1016/j.jmb.2006.04.051 CrossRefPubMedGoogle Scholar
  39. 39.
    Agniswamy J, Fang B, Weber IT (2007) Plasticity of S2–S4 specificity pockets of executioner caspase-7 revealed by structural and kinetic analysis. FEBS J 274:4752–4765. doi: 10.1111/j.1742-4658.2007.05994.x CrossRefPubMedGoogle Scholar
  40. 40.
    Lee D, Long SA, Adams JL et al (2000) Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. J Biol Chem 275:16007–16014. doi: 10.1074/jbc.275.21.16007 CrossRefPubMedGoogle Scholar
  41. 41.
    Blanchard H, Donepudi M, Tschopp M, Kodandapani L, Wu JC, Grutter MG (2000) Caspase-8 specificity probed at subsite S(4): crystal structure of the caspase-8-Z-DEVD-cho complex. J Mol Biol 302:9–16. doi: 10.1006/jmbi.2000.4041 CrossRefPubMedGoogle Scholar
  42. 42.
    Riedl SJ, Renatus M, Schwarzenbacher R et al (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104:791–800. doi: 10.1016/S0092-8674(01)00274-4 CrossRefPubMedGoogle Scholar
  43. 43.
    Pockros PJ, Schiff ER, Shiffman ML et al (2007) Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepatology 46:324–329. doi: 10.1002/hep.21664 CrossRefPubMedGoogle Scholar
  44. 44.
    Irene T (2008) Weber BFaJA. Caspases: structure-guided design of drugs to control cell death. Mini Rev Med Chem 8:1154–1162. doi: 10.2174/138955708785909899 CrossRefGoogle Scholar
  45. 45.
    Baskin-Bey ES, Washburn K, Feng S et al (2007) Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am J Transplant 7:218–225. doi: 10.1111/j.1600-6143.2006.01595.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bin Fang
    • 1
    • 2
  • Guoxing Fu
    • 1
    • 2
  • Johnson Agniswamy
    • 1
    • 2
  • Robert W. Harrison
    • 3
  • Irene T. Weber
    • 1
    • 2
  1. 1.Department of Biology, Molecular Basis of Disease ProgramGeorgia State UniversityAtlantaUSA
  2. 2.Department of BiologyGeorgia State UniversityAtlantaUSA
  3. 3.Department of Computer Science, Molecular Basis of Disease ProgramGeorgia State UniversityAtlantaUSA

Personalised recommendations