Advertisement

Assessment of a Coolant Injection Model on Cooled High-Pressure Vanes with Large-Eddy Simulation

  • M. HarniehEmail author
  • M. Thomas
  • R. Bizzari
  • J. Dombard
  • F. Duchaine
  • L. Gicquel
Article

Abstract

The high-pressure turbine blades are the components of the aero-engines which are the most exposed to extreme thermal conditions. To alleviate this issue, the blades are equipped with cooling systems to ensure long-term operation. However, the accurate prediction of the blade temperature and the design of the cooling system in an industrial context still remains a major challenge. Potential improvement is foreseen with Large-Eddy Simulation (LES) which is well suited to predict turbulent flows in such complex systems. Nonetheless, performing LES of a real cooled high-pressure turbine still remains expensive. To alleviate the issues of CPU cost, a cooling model recently developed in the context of combustion chamber liners is assessed in the context of blade cooling. This model was initially designed to mimic coolant jets injected at the wall surface and does not require to mesh the cooling pipes leading to a significant reduction in the CPU cost. The applicability of the model is here evaluated on the cooled Nozzle Guide Vanes (NGV) of the Full Aerothermal Combustor Turbine interactiOns Research (FACTOR) test rig. To do so, a hole modeled LES using the cooling model is compared to a hole meshed LES. Results show that both simulations yield very similar results confirming the capability of the approach to predict the adiabatic film effectiveness. Advanced post-processing and analyses of the coolant mass fraction profiles show that the turbulent mixing between the coolant and hot flows is however reduced with the model. This finding is confirmed by the turbulent map levels which are lower in the modeled approach. Potential improvements are hence proposed to increase the accuracy of such methods.

Keywords

Large-eddy simulation Blade cooling Film cooling Modeling 

Notes

Acknowledgements

The authors wish to gratefully acknowledge FACTOR (Full Aerothermal Combustor-Turbine interactions Research) Consortium for the kind permission of publishing the results herein. FACTOR is a Collaborative Project co-funded by the European Commission within the Seventh Framework Programme (2010- 2017) under the Grant Agreement 265985. This work was granted access to the HPC resources of IDRIS under the allocation 2018 - A0042A06074 made by GENCI.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Andrei, L., Innocenti, L., Andreini, A., Facchini, B., Winchler, L.: Film cooling modeling for gas turbine nozzles and blades: validation and application. J. Turbomach. 139, 011004–011004–9 (2016).  https://doi.org/10.1115/1.4034233 CrossRefGoogle Scholar
  2. 2.
    Andreini, A., Da Soghe, R., Facchini, B., Mazzei, L., Colantuoni, S., Turrini, F.: Local source based cfd modeling of effusion cooling holes: validation and application to an actual combustor test case. J. Eng. Gas Turbines Power. 136(1), 011506–011506–11 (2013).  https://doi.org/10.1115/1.4025316 CrossRefGoogle Scholar
  3. 3.
    auf dem Kampe, T., Völker, S.: A model for cylindrical hole film cooling—part ii: model formulation, implementation and results. J. Turbomach. 134(6), 061011 (2012)CrossRefGoogle Scholar
  4. 4.
    Dickhoff, J., Kusterer, K., Bhaskar, S.K., Bohn, D.: Cfd simulations for film cooling holes: comparison between different isotropic and anisotropic eddy viscosity models (51081) v05AT12a008 (2018).  https://doi.org/10.1115/GT2018-75543
  5. 5.
    Dyson, T.E., Bogard, D.G., Bradshaw, S.D.: Evaluation of cfd simulations of film cooling performance in the showerhead region of a turbine vane including conjugate effects (45233), 1977–1986 (2012).  https://doi.org/10.1115/IMECE2012-88386
  6. 6.
    Ravelli, S., Barigozzi, G.: Comparison of rans and detached eddy simulation modeling against measurements of leading edge film cooling on a first-stage vane. J. Turbomach. 139(5), 051005 (2017)CrossRefGoogle Scholar
  7. 7.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Scientific Computation Series. Springer, Berlin (2000)Google Scholar
  8. 8.
    Tucker, P.: Computation of unsteady turbomachinery flows: part 1 progress and challenges. Prog. Aerosp. Sci. 47(7), 522–545 (2011)CrossRefGoogle Scholar
  9. 9.
    Pichler, R., Sandberg, R.D., Laskowski, G., Michelassi, V.: High-fidelity simulations of a linear hpt vane cascade subject to varying inlet turbulence. In: Turbo Expo: Power for Land, Sea, and Air, 50787, pp. V02AT40A001 (2017)Google Scholar
  10. 10.
    Tucker, P.: Computation of unsteady turbomachinery flows: part 2 LES and hybrids. Prog. Aerosp. Sci. 47(7), 546–569 (2011)CrossRefGoogle Scholar
  11. 11.
    Tyacke, J.C., Tucker, P.G.: Future use of large eddy simulation in aero-engines. J. Turbomach. 137(8), 081005 (2015)CrossRefGoogle Scholar
  12. 12.
    Aillaud, P., Duchaine, F., Gicquel, O., Koupper, C., Staffelbach, G.: Large eddy simulation of trailing edge cutback film cooling: impact of internal stiffening ribs on the adiabatic effectiveness. In: 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS 2017), vol. CD. Milan, Italy (2017)Google Scholar
  13. 13.
    Duchaine, F., Corpron, A., Pons, L., Moureau, V., Nicoud, F., Poinsot, T.: Development and assessment of a coupled strategy for conjugate heat transfer with large eddy simulation: application to a cooled turbine blade. Int. J. Heat Fluid Flow 30(6), 1129–1141 (2009)CrossRefGoogle Scholar
  14. 14.
    Grosnickel, T., Duchaine, F., Gicquel, L., Koupper, C.: Large-eddy simulation of the flow developing in static and rotating ribbed channels. In: ASME Turboexpo 2019, pp. GT2019–90370. Phoenix, AZ, USA (2019)Google Scholar
  15. 15.
    Ling, Z., Guoliang, W.: Large eddy simulation on compound angle film cooling of turbine blades. In: IEEE 2011 10th International Conference on Electronic Measurement & Instruments, vol. 1, pp. 282–287. IEEE (2011)Google Scholar
  16. 16.
    Mendez, S., Nicoud, F.: Adiabatic homogeneous model for flow around a multiperforated plate. AIAA J. 46(10), 2623–2633 (2008)CrossRefGoogle Scholar
  17. 17.
    Bizzari, R., Lahbib, D., Dauptain, A., Duchaine, F., Gicquel, L., Nicoud, F.: A thickened-hole model for large eddy simulations over multiperforated liners. Flow Turbul. Combust. 101(3), 705–717 (2018).  https://doi.org/10.1007/s10494-018-9909-3 CrossRefGoogle Scholar
  18. 18.
    Bizzari, R.: Aerodynamic and Thermal Modelling of Effusion Cooling in LES. Phd thesis, Université Fédérale de Toulouse, INPT - Ecole doctorale MEGeP (2018)Google Scholar
  19. 19.
    Bizzari, R., Férand, M., Dauptain, A., Staffelbach, G., Richard, S., Mueller, J.D., Ogier, T., Exilard, G., Nicoud, F.: Mesh local refinement to enhance effusion cooling models; invited conference. In: ERCOFTAC (ed.) 12th International Symposium on Engineering Turbulence Modelling and Measurements (ETMM12). Montpellier (France) (2018)Google Scholar
  20. 20.
    Battisti, C., Kost, F., Atkins, N., Playford, W., Orain, M., Caciolli, G., Tarchi, L., Mersinligil, M., Raffel, J.: Full aerothermal combustor turbine interaction research. In: Proceedings of 2nd EASN WORKSHOP on Flight Physics (2012)Google Scholar
  21. 21.
    Krumme, A., Tegeler, M., Gattermann, S.: Design, integration and operation of a rotating combustor-turbine-interaction test rig within the scope of ec fp7 project factor. In: Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics ETC13, pp. 1–13 (2019)Google Scholar
  22. 22.
    Bacci, T., Caciolli, G., Facchini, B., Tarchi, L., Koupper, C., Champion, J.L.: Flowfield and temperature profiles measurements on a combustor simulator dedicated to hot streaks generation. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, pp. V05CT17A001–V05CT17A001. American Society of Mechanical Engineers (2015)Google Scholar
  23. 23.
    Han, J.C., Rallabandi, A.: Turbine blade film cooling using psp technique. Frontiers in Heat and Mass Transfer (FHMT) 1(1), 1–21 (2010)Google Scholar
  24. 24.
    Peet, Y., Lele, S.: Near field of film cooling jet issued into a flat plate boundary layer: Les study. Proceedings of the ASME Turbo Expo 4 (2008).  https://doi.org/10.1115/GT2008-50420
  25. 25.
    Bizzari, R., Lahbib, D., Dauptain, A., Duchaine, F., Richard, S., Nicoud, F.: Low order modeling method for assessing the temperature of multi-perforated plates. Int. J. Heat Mass Trans. 127(Part B), 727–742 (2018).  https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.059 CrossRefGoogle Scholar
  26. 26.
    Han, J.C., Ekkad, S.: Recent development in turbine blade film cooling. Int. J. Rotating Mach. 7(1), 21–40 (2001)CrossRefGoogle Scholar
  27. 27.
    Garnier, E., Adams, N., Sagaut, P.: Large eddy simulation for compressible flows (2009).  https://doi.org/10.1007/978-90-481-2819-8 CrossRefGoogle Scholar
  28. 28.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. www.cerfacs.fr/elearning (2011)
  29. 29.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)CrossRefGoogle Scholar
  30. 30.
    Gourdain, N., Gicquel, L., Montagnac, M., Vermorel, O., Gazaix, M., Staffelbach, G., Garcia, M., Boussuge, J., Poinsot, T.: High performance parallel computing of flows in complex geometries: I. methods. Comput. Sci. Disc. 2, 015003 (2009)CrossRefGoogle Scholar
  31. 31.
    Odier, N., Sanjosé, M., Gicquel, L., Poinsot, T., Moreau, S., Duchaine, F.: A characteristic inlet boundary condition for compressible, turbulent, multispecies turbomachinery flows. Comput. Fluids 178, 41–55 (2018).  https://doi.org/10.1016/j.compfluid.2018.09.014 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992).  https://doi.org/10.1016/0021-9991(92)90046-2 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Thomas, M., Duchaine, F., Gicquel, L., Koupper, C.: Advanced statistical analysis estimating the heat load issued by hot streaks and turbulence on a high-pressure vane in the context of adiabatic large eddy simulations. In: ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, pp. V02BT41A041–V02BT41A041. American Society of Mechanical Engineers (2017)Google Scholar
  34. 34.
    Granet, V., Vermorel, O., Leonard, T., Gicquel, L., Poinsot, T.: Comparison of nonreflecting outlet boundary conditions for compressible solvers on unstructured grids. AIAA J. 48(10), 2348–2364 (2010)CrossRefGoogle Scholar
  35. 35.
    Koupper, C., Poinsot, T., Gicquel, L., Duchaine, F.: Compatibility of characteristic boundary conditions with radial equilibrium in turbomachinery simulations. AIAA J. 52 (2014).  https://doi.org/10.2514/1.J052915 CrossRefGoogle Scholar
  36. 36.
    Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)CrossRefGoogle Scholar
  37. 37.
    Dapogny, C., Dobrzynski, C., Frey, P.: Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262, 358–378 (2014).  https://doi.org/10.1016/j.jcp.2014.01.005. http://www.sciencedirect.com/science/article/pii/S0021999114000266 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Harnieh, M., Gicquel, L., Duchaine, F.: Large eddy simulations of a highly loaded transonic blade with separated flow - invited conference. In: Turbomachinery Technical Conference and Exposition 2018, pp. GT2018–75730. ASME International Gas Turbine Institute, Oslo (2018)Google Scholar
  39. 39.
    Jin, Y., Du, J., Li, Z., Zhang, H.: Second-law analysis of irreversible losses in gas turbines. Entropy 19(9), 470 (2017).  https://doi.org/10.3390/e19090470 CrossRefGoogle Scholar
  40. 40.
    Safari, M., Sheikhi, M.R.H., Janbozorgi, M., Metghalchi, H.: Entropy transport equation in large eddy simulation for exergy analysis of turbulent combustion systems. Entropy 12(3), 434–444 (2010).  https://doi.org/10.3390/e12030434 CrossRefzbMATHGoogle Scholar
  41. 41.
    Koupper, C., Caciolli, G., Gicquel, L., Duchaine, F., Bonneau, G., Tarchi, L., Facchini, B.: Development of an engine representative combustor simulator dedicated to hot streak generation. J. Turbomach. 136(11), 111007–111007–10 (2014)CrossRefGoogle Scholar
  42. 42.
    Fric, T.F., Roshko, A.: Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 1–47 (1994)CrossRefGoogle Scholar
  43. 43.
    New, T., Lim, T., Luo, S.: Elliptic jets in cross-flow. J. Fluid Mech. 494, 119–140 (2003)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Favre, A.: Statistical equations of turbulent gases. In: Problems of Hydrodynamics and Continuum Mechanics, pp 231–266. SIAM, Philadelphia (1969)Google Scholar
  45. 45.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  46. 46.
    Smagorinsky, J.: General circulation experiments with the primitive equations: 1. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CERFACS - 42Toulouse Cedex 1France

Personalised recommendations