Quasi-DNS Dataset of a Piloted Flame with Inhomogeneous Inlet Conditions

  • Thorsten ZirwesEmail author
  • Feichi Zhang
  • Peter Habisreuther
  • Maximilian Hansinger
  • Henning Bockhorn
  • Michael Pfitzner
  • Dimosthenis Trimis


A quasi-DNS of the partially premixed turbulent Sydney flame in configuration FJ200-5GP-Lr75-57 has been conducted using detailed molecular diffusion for multi-component mixtures and complex reaction mechanisms. In order to study flame dynamics like regime transition in this flame for the development of new combustion models and to directly compare the quasi-DNS to different LES models, the simulation results are compiled into a data base. Because the simulation was performed with OpenFOAM, we demonstrate the quasi-DNS capabilities of OpenFOAM by performing canonical test cases. They attest that OpenFOAM’s cubic discretization has lower numerical diffusion compared to classical central difference schemes and can reach higher than second order convergence rate in some cases. The quasi-DNS of the Sydney flame is conducted with a self-developed reacting flow solver which is able to accurately compute molecular diffusion coefficients from kinetic gas theory and employs a fast implementation for detailed reaction mechanisms. The computational mesh is shown to be able to resolve the flow as well as the flame front sufficiently for the quasi-DNS. Comparisons with experimental data also show that the simulation can quantitatively reproduce measured time-mean and time-RMS statistics.


Mixed-mode combustion Quasi-DNS Turbulent combustion OpenFOAM 



We thank Assaad Masri for providing valuable information about the burner setup and access to the experimental results, as well as for helpful discussions. This work utilizes resources from the national supercomputer Cray XC40 Hazel Hen at the High Performance Computing Center Stuttgart (HLRS) and the computational resource ForHLR II at KIT funded by the Ministry of Science, Research and the Arts Baden-Württemberg and DFG (“Deutsche Forschungsgemeinschaft”). The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. ( for funding this project by providing computing time on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC) and on the GCS Supercomputer HAZEL HEN at Höchstleistungsrechenzentrum Stuttgart (

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Meares, S., Masri, A.R.: A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures. Combust. Flame 161(2), 484–495 (2014)CrossRefGoogle Scholar
  2. 2.
    Williams, F.: Recent advances in theoretical descriptions of turbulent diffusion flames. In: Turbulent Mixing in Nonreactive and Reactive Flows, pp 189–208. Springer (1975)Google Scholar
  3. 3.
    Williams, F.: Turbulent combustion. In: The Mathematics of Combustion, pp 97–131. SIAM (1985)Google Scholar
  4. 4.
    Dahms, R., Felsch, C., Röhl, O., Peters, N.: Detailed chemistry flamelet modeling of mixed-mode combustion in spark-assisted hcci engines. Proc. Combust. Inst. 33(2), 3023–3030 (2011)CrossRefGoogle Scholar
  5. 5.
    Fiorina, B., Mercier, R., Kuenne, G., Ketelheun, A., Avdić, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., et al.: Challenging modeling strategies for les of non-adiabatic turbulent stratified combustion. Combust. Flame 162(11), 4264–4282 (2015)CrossRefGoogle Scholar
  6. 6.
    Hu, B., Rutland, C.J., Shethaji, T.A.: A mixed-mode combustion model for large-eddy simulation of diesel engines. Combust. Sci. Technol. 182(9), 1279–1320 (2010)CrossRefGoogle Scholar
  7. 7.
    Barlow, R., Meares, S., Magnotti, G., Cutcher, H., Masri, A.: Local extinction and near-field structure in piloted turbulent ch 4/air jet flames with inhomogeneous inlets. Combust. Flame 162(10), 3516–3540 (2015)CrossRefGoogle Scholar
  8. 8.
    Olbricht, C., Ketelheun, A., Hahn, F., Janicka, J.: Assessing the predictive capabilities of combustion les as applied to the Sydney flame series. Flow Turb. Combust. 85(3–4), 513–547 (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Lipatnikov, A.N.: Stratified turbulent flames: Recent advances in understanding the influence of mixture inhomogeneities on premixed combustion and modeling challenges. Prog. Energy Combust. Sci. 62, 87–132 (2017)CrossRefGoogle Scholar
  10. 10.
    Wang, H., Zhang, P.: A unified view of pilot stabilized turbulent jet flames for model assessment across different combustion regimes. Proc. Combust. Inst. 36(2), 1693–1703 (2017)CrossRefGoogle Scholar
  11. 11.
    Masri, A.: Partial premixing and stratification in turbulent flames. Proc. Combust. Institut. 35(2), 1115–1136 (2015)CrossRefGoogle Scholar
  12. 12.
    Meares, S., Prasad, V., Magnotti, G., Barlow, R., Masri, A.: Stabilization of piloted turbulent flames with inhomogeneous inlets. Proc. Combust. Inst. 35(2), 1477–1484 (2015)CrossRefGoogle Scholar
  13. 13.
    Kleinheinz, K., Kubis, T., Trisjono, P., Bode, M., Pitsch, H.: Computational study of flame characteristics of a turbulent piloted jet burner with inhomogeneous inlets. Proc. Combust. Inst. 36(2), 1747–1757 (2017)CrossRefGoogle Scholar
  14. 14.
    Perry, B.A., Mueller, M.E.: Effect of multiscalar subfilter pdf models in les of turbulent flames with inhomogeneous inlets. Proc. Combust. Inst. 37(2), 2287–2295 (2019)CrossRefGoogle Scholar
  15. 15.
    Perry, B.A., Mueller, M.E., Masri, A.R.: A two mixture fraction flamelet model for large eddy simulation of turbulent flames with inhomogeneous inlets. Proc. Combust. Inst. 36(2), 1767–1775 (2017)CrossRefGoogle Scholar
  16. 16.
    Ji, H., Kwon, M., Kim, S., Kim, Y.: Numerical modeling for multiple combustion modes in turbulent partially premixed jet flames. J. Mech. Sci. Technol. 32 (11), 5511–5519 (2018)CrossRefGoogle Scholar
  17. 17.
    Tian, L., Lindstedt, R.: Evaluation of reaction progress variable-mixture fraction statistics in partially premixed flames. Proc. Combust. Inst. 37(2), 2241–2248 (2019)CrossRefGoogle Scholar
  18. 18.
    Weller, H., Tabor, G., Jasak, H., Fureby, C.: OpenFOAM, openCFD ltd. Software available at (2017)
  19. 19.
    Komen, E., Camilo, L., Shams, A., Geurts, B.J., Koren, B.: A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows. J. Comput. Phys. 345, 565–595 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Komen, E., Shams, A., Camilo, L., Koren, B.: Quasi-DNS capabilities of OpenFOAM for different mesh types. Comput. Fluids 96, 87–104 (2014)zbMATHCrossRefGoogle Scholar
  21. 21.
    Jin, Y., Uth, M., Herwig, H.: Structure of a turbulent flow through plane channels with smooth and rough walls: an analysis based on high resolution DNS results. Comput. Fluids 107, 77–88 (2015)zbMATHCrossRefGoogle Scholar
  22. 22.
    Habchi, C., Antar, G.: Direct numerical simulation of electromagnetically forced flows using OpenFOAM. Comput. Fluids 116, 1–9 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Addad, Y., Zaidi, I., Laurence, D.: Quasi-DNS of natural convection flow in a cylindrical annuli with an optimal polyhedral mesh refinement. Comput. Fluids 118, 44–52 (2015)zbMATHCrossRefGoogle Scholar
  24. 24.
    Lecrivain, G., Rayan, R., Hurtado, A., Hampel, U.: Using quasi-DNS to investigate the deposition of elongated aerosol particles in a wavy channel flow. Comput. Fluids 124, 78–85 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Chu, X., Laurien, E.: Direct numerical simulation of heated turbulent pipe flow at supercritical pressure. J. Nucl. Eng. Rad. Sci. 2(3), 031019 (2016)CrossRefGoogle Scholar
  26. 26.
    Chu, X., Laurien, E.: Flow stratification of supercritical CO2 in a heated horizontal pipe. J. Supercrit. Fluids 116, 172–189 (2016)CrossRefGoogle Scholar
  27. 27.
    Chu, X., Laurien, E., McEligot, D.M.: Direct numerical simulation of strongly heated air flow in a vertical pipe. Int. J. Heat Mass Transf. 101, 1163–1176 (2016)CrossRefGoogle Scholar
  28. 28.
    Zheng, E., Rudman, M., Singh, J., Kuang, S.: Assessing OpenFOAM for DNS of turbulent non-Newtonian flow in a pipe. In: 21st Australasian Fluid Mechanics Conference, vol. 21. Australasian Fluid Mechanics Society (2018)Google Scholar
  29. 29.
    Zheng, E., Rudman, M., Singh, J., Kuang, S.: Direct numerical simulation of turbulent non-Newtonian flow using OpenFOAM. Applied Mathematical Modelling (2019)Google Scholar
  30. 30.
    Bricteux, L., Zeoli, S., Bourgeois, N.: Validation and scalability of an open source parallel flow solver. Concurr. Comput.: Practice Exp. 29(21), e4330 (2017)CrossRefGoogle Scholar
  31. 31.
    Zhong, S., Peng, Z., Li, Y., Li, H., Zhang, F.: Direct numerical simulation of methane turbulent premixed oxy-fuel combustion. Tech. rep., SAE Technical Paper (2017)Google Scholar
  32. 32.
    Tufano, G., Stein, O., Kronenburg, A., Frassoldati, A., Faravelli, T., Deng, L., Kempf, A., Vascellari, M., Hasse, C.: Resolved flow simulation of pulverized coal particle devolatilization and ignition in air-and O2/CO2-atmospheres. Fuel 186, 285–292 (2016)CrossRefGoogle Scholar
  33. 33.
    Tufano, G., Stein, O., Kronenburg, A., Gentile, G., Stagni, A., Frassoldati, A., Faravelli, T., Kempf, A., Vascellari, M., Hasse, C.: Fully-resolved simulations of coal particle combustion using a detailed multi-step approach for heterogeneous kinetics. Fuel 240, 75–83 (2019)CrossRefGoogle Scholar
  34. 34.
    Wang, B., Kronenburg, A., Dietzel, D., Stein, O.: Assessment of scaling laws for mixing fields in inter-droplet space. Proc. Combust. Inst. 36(2), 2451–2458 (2017)CrossRefGoogle Scholar
  35. 35.
    Wang, B., Kronenburg, A., Tufano, G.L., Stein, O.T.: Fully resolved DNS of droplet array combustion in turbulent convective flows and modelling for mixing fields in inter-droplet space. Combust. Flame 189, 347–366 (2018)CrossRefGoogle Scholar
  36. 36.
    Vo, S., Kronenburg, A., Stein, O., Cleary, M.: Multiple mapping conditioning for silica nanoparticle nucleation in turbulent flows. Proc. Combust. Inst. 36(1), 1089–1097 (2017)CrossRefGoogle Scholar
  37. 37.
    Zhang, F., Zirwes, T., Habisreuther, P., Bockhorn, H.: Effect of unsteady stretching on the flame local dynamics. Combust. Flame 175, 170–179 (2017)CrossRefGoogle Scholar
  38. 38.
    Vo, S., Kronenburg, A., Stein, O.T., Hawkes, E.R.: Direct numerical simulation of non-premixed syngas combustion using OpenFOAM. In: High Performance Computing in Science and Engineering, vol. 16, pp 245–257. Springer (2016)Google Scholar
  39. 39.
    Zhang, F., Bonart, H., Zirwes, T., Habisreuther, P., Bockhorn, H., Zarzalis, N.: Direct numerical simulation of chemically reacting flows with the public domain code OpenFOAM. In: Nagel, W., Kröner, D., Resch, M. (eds.) High Performance Computing in Science and Engineering ’14, pp 221–236. Springer, Berlin (2015)Google Scholar
  40. 40.
    Zirwes, T., Zhang, F., Häber, T., Bockhorn, H.: Ignition of combustible mixtures by hot particles at varying relative speeds. Combust. Sci. Technol., 1–18 (2018)Google Scholar
  41. 41.
    Goodwin, D., Moffat, H., Speth, R.: Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. version 2.3.0b (2017). Software available at
  42. 42.
    Zirwes, T., Zhang, F., Denev, J., Habisreuther, P., Bockhorn, H.: Automated code generation for maximizing performance of detailed chemistry calculations in OpenFOAM. In: Nagel, W., Kröner, D., Resch, M. (eds.) High Performance Computing in Science and Engineering ’17. Springer, Berlin (2017)Google Scholar
  43. 43.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. RT Edwards, Inc (2005)Google Scholar
  44. 44.
    Suite of nonlinear and differential/algebraic equation solvers.
  45. 45.
    Barlow, R., Karpetis, A., Frank, J., Chen, J.Y.: Scalar profiles and no formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame 127(3), 2102–2118 (2001)CrossRefGoogle Scholar
  46. 46.
    Kee, R., Coltrin, M., Glarborg, P.: Chemically Reacting Flow: Theory and Practice. Wiley (2005)Google Scholar
  47. 47.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turb. Combust. 62(3), 183–200 (1999)zbMATHCrossRefGoogle Scholar
  48. 48.
    Lu, T., Law, C.: A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with no chemistry. Combust. Flame 154(4), 761–774 (2008)CrossRefGoogle Scholar
  49. 49.
    Poinsot, T.J., Lelef, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., Jr., W.G., Lissianski, V., Qin, Z.: Gri 3.0 reaction mechanism.
  51. 51.
    Bilger, R.: Turbulent jet diffusion flames. Prog. Energy Combust. Sci. 1(2-3), 87–109 (1976)CrossRefGoogle Scholar
  52. 52.
    Yamashita, H., Shimada, M., Takeno, T.: A numerical study on flame stability at the transition point of jet diffusion flames. In: Symposium (International) on Combustion, vol. 26, pp 27–34. Elsevier (1996)Google Scholar
  53. 53.
    Peters, N.: Turbulent Combustion. Cambridge University Press (2000)Google Scholar
  54. 54.
    Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer Science & Business Media (2012)Google Scholar
  55. 55.
    Taylor, G.I., Green, A.E.: Mechanism of the production of small eddies from large ones. Proc. R. S. London Series A-Math. Phys. Sci. 158(895), 499–521 (1937)zbMATHCrossRefGoogle Scholar
  56. 56.
    Abdelsamie, A., Fru, G., Oster, T., Dietzsch, F., Janiga, G., Thévenin, D.: Towards direct numerical simulations of low-mach number turbulent reacting and two-phase flows using immersed boundaries. Comput. Fluids 131, 123–141 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Van Rees, W.M., Leonard, A., Pullin, D., Koumoutsakos, P.: A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. J. Comput. Phys. 230(8), 2794–2805 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Saad, T., Cline, D., Stoll, R., Sutherland, J.C.: Scalable tools for generating synthetic isotropic turbulence with arbitrary spectra. AIAA J. 55(1), 327–331 (2016)CrossRefGoogle Scholar
  59. 59.
    Comte-Bellot, G., Corrsin, S.: The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25(4), 657–682 (1966)CrossRefGoogle Scholar
  60. 60.
    Lesieur, M.: Turbulence in Fluids (Fluid Mechanics and Its Applications). Springer (2008)Google Scholar
  61. 61.
    Zirwes, T., Zhang, F., Denev, J., Habisreuther, P., Bockhorn, H., Trimis, D.: Detailed transport and performance optimization for massively parallel simulations of turbulent combustion with OpenFOAM. In: 13th OpenFOAM Workshop, vol. 13. OpenFOAM Workshop (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Steinbuch Centre for ComputingKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  2. 2.Engler-Bunte-Institute, Division of Combustion TechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Institute for ThermodynamicsBundeswehr University MunichNeubibergGermany

Personalised recommendations